Quality

A High Performance Spark DQ Library

Chris Twiner

Copyright @ 2022 - UBS AG

Table of contents

Table of contents

1. Quality - 0.1.3.1 5
1.1 Run complex data quality rules using simple SQL in a batch or streaming Spark application at scale. 5
1.2 Enhanced Spark Functionality 5

2. Getting Started 6
2.1 Building and Setting Up 6
2.2 Defining & Running your first RuleSuite 11
2.3 Those are some Quality flavours 13
2.4 Key SQL Functions to use in your Rules 17
2.5 Reading & Writing RuleSuites 18
2.6 Running Quality on Databricks 22
2.7 Running Quality on Fabric 25

3. About 26
3.1 History 26
3.2 Performance Choices 28
3.3 Changelog 35

4. Model 38
4.1 Rule Model 38
4.2 Storage Model 40
4.3 Meta Rulesets? 41

5. Advanced Usage 42
5.1 Bloom Filters 42
5.2 Map Functions 45
5.3 Aggregation Functions 47
5.4 User Defined Functions 49
5.5 PRNG Functions 54
5.6 Row ID Functions 55
5.7 QualityRules 57
5.8 QualityFolder 63
5.9 QualityExpressions 65
5.10 Validation 67
5.11 Expression Documentation 69
5.12 View Loading 70
5.13 Processors - Row By Row 71

6. SQL Functions Documentation 79
6.1 79

-2/88 - Copyright @ 2022 - UBS AG

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23
6.24
6.25
6.26
6.27
6.28
6.29
6.30
6.31
6.32
6.33
6.34
6.35
6.36
6.37
6.38

6.39

_lambda
agg Expr
as uuid
big Bloom
callFun
coalesce If Attributes Missing
coalesce If Attributes Missing Disable
comparable Maps
digest To Longs
digest To Longs Struct
disabled Rule
drop field
failed
field Based ID
flatten Results
flatten Rule Results
from yaml
hash Field Based ID
hash With
hash With Struct
id base64
id Equal
id from base64
id raw type
id_size
inc
long Pair
long Pair Equal
long Pair From UUID
map Contains
map Lookup
meanF
murmur3_ID
pack Ints
passed
prefixed To Long Pair
print Code

print Expr

- 3/88 -

Table of contents

79
79
79
79
79
80
80
80
80
80
80
80
81
81
81
81
81
81
81
81
82
82
82
82
82
82
82
82
82
83
83
83
83
83
83
83
83
84

Copyright @ 2022 - UBS AG

6.40
6.41
6.42
6.43
6.44
6.45
6.46
6.47
6.48
6.49
6.50
6.51
6.52
6.53
6.54
6.55
6.56
6.57
6.58
6.59
6.60
6.61
6.62
6.63
6.64
6.65
6.66

6.67

probability

probability In
provided ID

results With

return Sum

reverse Comparable Maps
rng

rng Bytes

rng ID

rng UUID

rule result

rule Suite Result Details
small Bloom

soft Fail

soft Failed

strip result ddl

sum With

to yaml

unique ID

unpack

unpack Id Triple

update field

za Field Based ID

za Hash Longs With

za Hash Longs With Struct
za Hash With

za Hash With Struct

za Longs Field Based ID

-4/88 -

Table of contents

84
84
84
84
84
84
84
85
85
85
85
85
85
86
86
86
86
86
87
87
87
87
87
87
87
87
87

88

Copyright @ 2022 - UBS AG

1. Quality - 0.1.3.1

1. Quality - 0.1.3.1

erage

Statement 98.14 Branch 97.48

1.1 Run complex data quality rules using simple SQL in a batch or streaming Spark application at
scale.

Write rules using simple SQL or create re-usable functions via SQL Lambdas.
Your rules are just versioned data, store them wherever convenient, use them by simply defining a column.

* [test packages for Fabric
* [Spark 4 support
* [5-10% speed bump with a change in compilation defaults

* & sparkless row level processors added for non-spark runtimes (uses spark at compilation time)

Rules are evaluated lazily during Spark actions, such as writing a row, with results saved in a single predictable column.

1.2 Enhanced Spark Functionality

Lookup Functions are distributed across the Spark cluster and held in memory, as such no shuffling is required where the
shuffling introduced by joins may be too expensive:

* Support for massive Bloom Filters while retaining FPP (i.e. several billion items at 0.001 would not fit into a normal 2gb byte
array)

e Map lookup expressions for exact lookups and contains tests, using broadcast variables under the hood they are a great fit for
small reference data sets

* View loading - manage the use of session views in your application through configuration and a pluggable DataFramelLoader
e Lambda Functions - user provided re-usable sql functions over late bound columns

» Fast PRNG's exposing RandomSource allowing pluggable and stable generation across the cluster

* Aggregate functions over Maps expandable with simple SQL Lambdas

* Row ID expressions including guaranteed unique row IDs (based on MAC address guarantees)

Plus a collection of handy functions to integrate it all.

Last update: October 24, 2025 15:00:20
Created: October 24, 2025 15:00:20

-5/88 - Copyright @ 2022 - UBS AG

https://commons.apache.org/proper/commons-rng/commons-rng-simple/apidocs/org/apache/commons/rng/simple/RandomSource.html

2. Getting Started

2. Getting Started

2.1 Building and Setting Up

2.1.1 Migrating from 0.0.3t0 0.1.0

The quality package has been trimmed down to common functionality only. DSL / Column based functions and types have moved
to specific packages similar to implicits:

import com.sparkutils.quality._
import functions._

import types._

import implicits._

The functions package aims to have an equivalent column dsl function for each bit of sql based functionality. The notable
exception to this is the lambda, callFun and () functions, for which you are better off using your languages normal support for
abstraction. A number of the functions have been, due to naming choice, deprecated they will be removed in 0.2.0.

2.1.2 Building The Library

e fork,
» use the Scala dev environment of your choice,

e or build directly using Maven

Building via commandline
For OSS versions (non Databricks runtime - dbr):

mvn --batch-mode --errors --fail-at-end --show-version -DinstallAtEnd=true -DdeployAtEnd=true -DskipTests install -P Spark321

but dbr versions will not be able to run tests from the command line (typically not an issue in intellij):

mvn --batch-mode --errors --fail-at-end --show-version -DinstallAtEnd=true -DdeployAtEnd=true -DskipTests clean install -P 10.4.dbr

You may also build the shaded uber test jar for easy testing in Spark clusters for each profile:

mvn -f testShades/pom.xml --batch-mode --errors --fail-at-end --show-version -DinstallAtEnd=true -DdeployAtEnd=true -Dmaven.test.skip=true clean install -P
10.4.dbr

The uber test jar artefact starts with 'quality testshade 'instead of just 'quality ' and is located in the testShades/target/
directory of a given build. This is also true for the artefacts of a runtime build job within a full build gitlab pipeline. All of the
required jar's are shaded so you can quickly jump into using Quality in notebooks for example.

2.1.3 Running the tests

In order to run the tests you must follow these instructions to create a fake winutils.

Also ensure only the correct target Maven profile and source directories are enabled in your IDE of choice.
The performance tests are not automated and must be manually run when needed.

When running tests on jdk 17/21 you also need to add the following startup parameters:

--add-opens=java.base/java. lang=ALL - UNNAMED
--add-opens=java.base/java.lang.invoke=ALL-UNNAMED
--add-opens=java.base/java.lang.reflect=ALL-UNNAMED
--add-opens=java.base/java.1i0=ALL-UNNAMED
--add-opens=java.base/java.net=ALL-UNNAMED
--add-opens=java.base/java.nio=ALL-UNNAMED
--add-opens=java.base/java.util=ALL-UNNAMED
--add-opens=java.base/java.util.concurrent=ALL-UNNAMED

-6/88 - Copyright @ 2022 - UBS AG

https://github.com/globalmentor/hadoop-bare-naked-local-fs/issues/2#issuecomment-1444453024

--add
--add
--add
--add
--add

-opens=java
-opens=java
-opens=java
-opens=java
-opens=java

2.1.4 Build tool dependencies

.base/java.util.concurrent.atomic=ALL-UNNAMED

.base/sun.
.base/sun.
.base/sun.
.base/sun.

nio.ch=ALL-UNNAMED
nio.cs=ALL-UNNAMED
security.action=ALL-UNNAMED
util.calendar=ALL-UNNAMED

Also for Spark 4 builds requiring 17/21 you must use Scala SDK 2.13.12 or similar which supports higher jdk versions.

2.1.4 Build tool dependencies

Quality is cross compiled for different versions of Spark, Scala and runtimes such as Databricks. The format for artifact's is:

quality_ RUNTIME_SPARKCOMPATVERSION_SCALACOMPATVERSION-VERSION.jar

e.d.

quality_4.0.0.0ss_4.0_2.13-0.1.3.1.jar

The build poms generate those variables via maven profiles, but you are advised to use properties to configure e.g. for Maven:

<dependency>
<groupId>com.sparkutils</groupId>
<artifactId>quality_${qualityRuntime}${sparkShortVersion}_${scalaCompatVersion}</artifactId>
<version>${qualityversion}</version>

</dependency>

The full list of supported runtimes is below:

Spark Version

2.4.6

3.0.3

3.1.3

3.1.3

3.2.0

3.2.1

3.2.1

3.3.2

3.3.2

3.3.2

3.3.2

3.4.1

3.4.1

3.4.1

3.5.0

3.5.0

3.5.0

3.5.0

3.5.0

4.0.0

4.0.0

sparkShortVersion qualityRuntime scalaCompatVersion
2.4 2.11
3.0 2.12
3.1 2.12
3.1 9.1.dbr_ 2.12
3.2 2.12
3.2 3.2.1.0ss_ 2.12
3.2 10.4.dbr_ 2.12
3.3 3.3.2.0ss_ 2.12
3.3 11.3.dbr_ 2.12
3.3 12.2.dbr_ 2.12
3.3 13.1.dbr_ 2.12
3.4 3.4.1.08s 2.12
3.4 13.1.dbr_ 2.12
3.4 13.3.dbr_ 2.12
3.5 3.5.0.0ss_ 2.12
3.5 14.0.dbr_ 2.12
3.5 14.3.dbr_ 2.12
3.5 15.4.dbr 2.12
3.5 16.4.dbr_ 2.12
4.0 4.0.0.0ss_ 2.13
4.0 17.3.dbr_ 2.13

-7/88 - Copyright @ 2022 - UBS AG

2.1.5 Sql functions vs column dsl

Fabric 1.3 uses the 3.5.0.0ss_runtime, other Fabric runtimes may run on their equivalent OSS version.

2.4,9.1.dbr, 10.4.dbr and 11.3.dbr support is deprecated and will be removed in 0.1.4 version. 3.1.2 support is replaced by 3.1.3
due to interpreted encoder issues.

‘atabricks 13.x support

13.0 also works on the 12.2.dbr build as of 10th May 2023, despite the Spark version difference. 13.1 requires its own version as it
backports 3.5 functionality. The 13.1.dbr quality runtime build also works on 13.2 DBR. 13.3 LTS has its own runtime

Atabricks 14.x support

Due to back-porting of SPARK-44913 frameless 0.16.0 (the 3.5.0 release) is not binary compatible with 14.2 and above which has
back-ported this 4.0 interface change. Similarly, 4.0 / 14.2 introduces a change in resolution so a new runtime version is required
upon a potential fix for 44913 in frameless. As such 14.3 has its own runtime

él.3 Requires com.sparkutils.frameless for newer releases

Quality 0.1.3 uses com.sparkutils.frameless for the 3.5, 13.3 and 14.x releases together with the shim project, allowing quicker
releases of Databricks runtime supports going forward. The two frameless code bases are not binary compatible and will require
recompilation. This may revert to org.typelevel.frameless in the future.

2.1.5 Sql functions vs column dsl

Similar to normal Spark functions there Quality's functions have sql variants to use with select / sql or expr() and the dsl variants

built around Column.

You can use both the sql and dsl functions often without any other Quality runner usage, including lambdas. To use the dsl
functions, import quality.functions. , to use the sql functions you can either use the SparkExtension or the regsterXX functions
available from the quality package.

Developing for a Databricks Runtime

As there are many compatibility issues that Quality works around between the various Spark runtimes and their Databricks
equivalents you will need to use two different runtimes when you do local testing (and of course you should do that):

<properties>
<qualityVersion>0.1.3.1</qualityVersion>
<qualityTestPrefix>4.0.0.0ss_</qualityTestPrefix>
<qualityDatabricksPrefix>17.3.dbr_</qualityDatabricksPrefix>
<sparkShortVersion>4.0</sparkShortVersion>
<scalaCompatVersion>2.13</scalaCompatVersion>

</properties>

<dependencies>
<dependency>
<groupId>com.sparkutils.</groupId>
<artifactId>quality_${qualityTestPrefix}${sparkShortVersion}_${scalaCompatVersion}</artifactId>
<version>${qualityVversion}</version>
<scope>test</scope>
</dependency>
<dependency>
<groupId>com.sparkutils</groupId>
<artifactId>quality_${qualityDatabricksPrefix}${sparkShortVersion}_ ${scalaCompatVersion}</artifactId>
<version>${qualityVersion}</version>
<scope>compile</scope>
</dependency>
</dependencies>

That horrific looking "." on the test groupld is required to get Maven 3 to use different versions many thanks for finding this

Zheng.

It's safe to assume better build tools like gradle / sbt do not need such hackery.

- 8/88 - Copyright @ 2022 - UBS AG

https://github.com/sparkutils/frameless
https://github.com/sparkutils/shim
https://stackoverflow.com/a/67743309
https://stackoverflow.com/a/67743309

2.1.6 Using the SQL functions on Spark Thrift (Hive) servers

The known combinations requiring this approach is below:

Spark sparkShortVersion qualityTestPrefix qualityDatabricksPrefix scalaCompatVersion
Version

3.2.1 3.2 3.2.1.0ss_ 10.4.dbr_ 2.12
3.3.0 3.3 3.3.0.0ss_ 11.3.dbr_ 2.12
3.3.2 3.3 3.3.2.0ss_ 12.2.dbr_ 2.12
3.4.1 3.4 3.4.1.0ss_ 13.1.dbr_ 2.12
3.5.0 3.5 3.5.0.0ss_ 14.0.dbr_ 2.12
3.5.0 3.5 3.5.0.0ss_ 14.3.dbr_ 2.12
3.5.0 3.5 3.5.0.0ss_ 15.4.dbr_ 2.12
3.5.0 3.5 3.5.0.0ss_ 16.4.dbr_ 2.12
4.0.0 4.0 4.0.0.0ss_ 17.3.dbr_ 2.13

2.1.6 Using the SQL functions on Spark Thrift (Hive) servers
Using the configuration option:

spark.sql.extensions=com.sparkutils.quality.impl.extension.QualitySparkExtension

when starting your cluster, with the appropriate compatible Quality runtime jars - the test Shade jar can also be used -, will
automatically register the additional SQL functions from Quality.

>
{park 2.4 runtimes are not supported

2.4 is not supported as Spark doesn't provide for SQL extensions in this version.

ﬁlre SQL only

Lambdas, blooms and map's cannot be constructed via pure sql, so the functionality of these on Thrift/Hive servers is limited.

Query Optimisations

The Quality SparkExtension also provides query plan optimisers that re-write as uuid and id base64 usage when compared to
strings. This allows BI tools to use the results of view containing as uuid or id base64 strings in dashboards. When the BI tool
filters or selects on these strings passed down to the same view, the string is converted back into its underlying parts. This
allows for predicate pushdowns and other optimisations against the underlying parts instead of forcing conversions to string.

These two currently existing optimisations are applied to joins and filters against =, <=>, >, >=, <, <= and "in".

In order to use the query optimisations within normal job / calculator writing you must still register via spark.sqgl.extensions but
you'll also be able to continue using the rest of the Quality functionality.

The extension also enables the FunNRewrite optimisation (as of 0.1.3.1 and Spark 3.2 and higher) which expands user functions
allowing sub expression elimination.

Configuring on Databricks runtimes

In order to register the extensions on Databricks runtimes you need to additionally create a cluster init script much like:

-9/88 - Copyright @ 2022 - UBS AG

2.1.7 2.4 Support requires 2.4.6 or Janino 3.0.16

#!/bin/bash

cp /dbfs/FileStore/XXXX-quality_testshade_12_2_ ver.jar /databricks/jars/quality_testshade_12_2 ver.jar

where the first path is your uploaded jar location. You can create this script via a notebook on running cluster in the same
workspace with throwaway code much like this:

val scriptName = "/dbfs/add_quality_plugin.sh"
val script = s"""
#!/bin/bash

cp /dbfs/FileStore/XXXX-quality_testshade_12_2 ver.jar /databricks/jars/quality_testshade_12_2_ ver.jar
W

import java.io._

new File(scriptName).createNewFile

new PrintWriter(scriptName) {write(script); close}

You must still register the Spark config extension attribute, but also make sure the Init script has the same path as the file you
created in the above snippet.

2.1.7 2.4 Support requires 2.4.6 or Janino 3.0.16

Due to Janino #90 using 2.4.5 directly will bring in 3.0.9 janino which can cause VerifyErrors, use 2.4.6 if you can't use a 3.x
Spark.

Last update: October 24, 2025 15:00:20
Created: October 24, 2025 15:00:20

-10/88 - Copyright @ 2022 - UBS AG

https://github.com/janino-compiler/janino/issues/90

2.2 Defining & Running your first RuleSuite

2.2 Defining & Running your first RuleSuite

import com.sparkutils.quality._

// setup all the Quality sql functions
registerQualityFunctions()

// define a rule suite
val rules = RuleSuite(rsId, Seq(
RuleSet(Id(50, 1), Seq(
Rule(Id(100, 1), ExpressionRule("a % 2 == 0")),
Rule(Id(100, 2), ExpressionRule("b + 20 < 10"))
Rule(Id(100, 3), ExpressionRule("(1060 * c) + d < e"))
).
RuleSet(Id(50, 2), Seq(
Rule(Id(100, 5), ExpressionRule("e > 60 or e < 30"))..
)
Ruleset(Id(50, 3), Seq(
Rule(Id(100, 9),ExpressionRule("i = 5")),

))

), Seq(
LambdaFunction("isReallyNull", "param -> isNull(param)", Id(200,134)),
LambdaFunction("isGreaterThan", "(a, b) -> a > b", Id(201,131))

))
// add the ruleRunner expression to the DataFrame
val withEvaluatedRulesDF = sparkSession.read.parquet(...).

withColumn("DataQuality", ruleRunner(rules))

withEvaluatedRulesDF.write. ... // or show, or count, or some other action

Your expressions used, in dg/triggers, output expressions (for Rules and Folder) and lambda functions can contain any valid SQL
that does not include Nondeterministic functions such as rand(), uuid() or indeed the Quality random and unique id() functions.

Ql & Sub queries

Prior to 3.4 exists, in, and scalar subqueries (correlated or not) could not be used in any Quality rule SQL snippets.

3.4 has allowed the use of most sub query patterns, such as checking foreign keys via an exists in a dq rule where the data is too
large for maps, or selecting the maximum matching value in an output expression. There are some oddities like you must use an alias
on the input dataframe if a correlated subquery also has the same field names, not doing so results in either silent failure or at best
an 'Expression "XXX" is not an rvalue' compilation error. The ruleEngineWithStruct transformer will automatically add an alias of
'main' to the input dataframe.

Lambdas however introduce some complications, 3.4 quite reasonably had no intention of supporting the kind of thing Quality is
doing, so there is code making it work for the obvious use case of DRY using row attributes.

Spark 4.0 / 14.3 LTS introduces SPARK-47509 which limits support by blocking all possible usages. Quality versions after 0.1.3-RC4
work around this by translating all lambda functions at call site to the direct expression. This change has had the added benefit of
allowing more complex re-use patterns but may result in more complex errors or the 47509 error.

Per 47509, Quality enables this behaviour only when
spark.sql.analyzer.allowSubqueryExpressionsInLambdasOrHigherOrderFunctions is false (the default for Spark 4) or not defined,
otherwise the behaviour allows the usage as a higher order function (e.g. in transform etc.) and acts as prior to 0.1.3-RC4.

LambdaFunction("genMax", "ii -> select max(i_s.i) from tableName i_s where i_s.i > ii", Id(2404,1)))

Calling with genMax(i) or genMax(i * 1) in an Rule or OutputExpression, where i is an column attribute will work and be translated
as a join, per 47509 using it within transform will have correctness issues.

2.2.1 withColumn is BAD - how else can | add columns?

I understand repeatedly calling withColumn/withColumnRenamed can cause performance issues due to excessive projections but
how else can I add a RuleSuite in Spark?

// read a file and apply the rules storing results in the column DataQuality
sparkSession.read.parquet("theFilePath").
transform(addDataQualityF(rules, "DataQuality"))

-11/88 - Copyright @ 2022 - UBS AG

https://issues.apache.org/jira/browse/SPARK-47509

2.2.2 Filtering the Results

// read a file and apply the rules storing the overall result and details in the columns overallResult, dataQualityResults
sparkSession.read.parquet("theFilePath").
transform(addoverallResultsAndDetailsF(rules, "overallResult",
"dataQualityResults"))

The transform functions allow easy chaining of operations on DataFrames. However you can equally use the non "xxxxxF"
functions such as addOverallResultsAndDetails with the same names to directly add columns and rule processing.
2.2.2 Filtering the Results

The two most common cases for running DQ rules is to report on and filter out bad rows. Filtering can be implemented for a
RuleSuiteResult with:

withEvaluatedRulesDF.filter("DataQuality.overallResult = passed()")

Getting all of the rule results can be implemented with the flattenResults function:

val exploded = withEvaluatedRulesDF.select(expr("*"),
expr("explode(flattenResults(DataQuality))").
as("struct")).select("*", "struct.*")

Flatten results unpacks the resulting structure, including unpacking all the Id and Versions Ints combined into the single LongType
for storage.

Last update: October 24, 2025 15:00:20
Created: October 24, 2025 15:00:20

-12/88 - Copyright @ 2022 - UBS AG

2.3 Those are some Quality flavours

2.3 Those are some Quiality flavours

Quality has four main flavours with sprinklings of other Quality ingredients like the sql function suite.

These flavours are provided by four "runners" which add a Column to a Spark Dataset/Dataframe.

2.3.1 Quiality / QualityData - ruleRunner
Execute SQL based data validation rules, capture all the results and store them with your data for easy and fast access.
Example Usage: Validating in-bound data or the results of a calculation.

What is stored:

overallResult == failed)

overallResult == failed)

Rule Set - 1d(2, 1) Rule - 1d(3, 3) - failedj

ruleResults
(Rule Suite - 1d(1, 1) Rule - Id(4, 2) - soft failedj

ruleSetResults

overallResult == passed j

Rule Set - d(3, 2) Rule - 1d(5, 1) - soft failed)

ruleResults

Rule - 1d(6, 1) - passedj

2.3.2 QualityRules - ruleEngineRunner

QualityRules extends the base Quality framework to provide the ability to generate output based on a single SQL rule matching
the input data. Effectively an auditable large scale SQL case statement.

Conceptually trigger rules are the when and Output rules are the then ordered by salience.
Example Usage: Derivation Logic.

What is stored:

-13/88 - Copyright @ 2022 - UBS AG

2.3.3 QualityFolder - ruleFolderRunner

Rule Suite - Id(1, 1)

overallResult == failed

overallResult == failed

Rule - 1d(3, 3) - failed

Rule - 1d(4, 2) - *Salience 1000* - passed)

overallResult == passed
Rule - 1d(5, 1) - soft failed

Rule - 1d(6, 1) - *Salience 500* - passed)i selected as the salience is the lowest

Rule Set - 1d(2, 1)

ruleSuiteResults ruleResults

runner result colum ruleSetResults:

Rule Set - 1d(3, 2)

ruleResults

salientResult == suite 1d(1,1), set Id(3,2), rule |d(6,1)

result - The Id(6,1) Output Expression - structure, arrays, map etc. (called from the salientRug)

2.3.3 QuialityFolder - ruleFolderRunner

QualityFolder extends QualityRules providing the ability to change values of attributes based on any number of SQL rules

matching the input data.

Unlike QualityRules which uses salience to select only one Output expression, Folder uses salience to order the execution of all
the matching Trigger's paired Output Expressions - folding the results as it goes.

Example Usage: Correction of in-bound data to enable subsequent calculators to process, defaulting etc.

What is stored:

-14/88 - Copyright @ 2022 - UBS AG

https://en.wikipedia.org/wiki/Fold_(higher-order_function)#:~:text=In-20functional-20programming-2C-20fold-20(also,constituent-20parts-2C-20building-20up-20a)

runner result colum

ruleSuiteResult

2.3.4 QualityExpressions - ExpressionRunner

Rule Suite - 1d(1, 1)

overallResult == failed

overallResult == failed

Rule Set - 1d(2, 1) Rule - 1d(3, 3) - failed

ruleResults

Rule - Id(4, 2) - *Salience 1000* - passed)

ruleSetResults

overallResult == passed)

Rule Set - 1d(3, 2) Rule - 1d(5, 1) - soft failecD

ruleResults

Rule - 1d(6, 1) - *Salience 500* - passed)

result (from below *folding*))

[sort all 'passed' Rule's Output Expressions by salience ascending 1d(6,1) then Id(4,2))

v

[Use starting expression as «output»)

[Call next Output Expression with «output» as it's input)

! A

[Use the result as «output»)

v

More matching Output expressions? >yes—

Use «output» as result

2.3.4 QualityExpressions - ExpressionRunner

QualityExpressions extends QualityRules providing the raw results as yaml strings (with type) for expressions and allowing

aggregate expressions.

Example Usage: Providing totals or other relevant aggregations over datasets or DQ results - e.g. only deem the data load

correct when 90% of the rows have good DQ.

What is stored:

Rule Suite - 1d(1, 1)

ruleResult - '124"\n
resultDDL - BIGINT

Rule - 1d(3, 3)

Rule Set - 1d(2, 1) ruleResults

ruleResult - {key: 5435, value: RESULT}
resultDDL - STRUCT<key: INT, value: STRING>

Rule - 1d(4, 2)

ruleSetResults:

ruleResult - 'A Result'\n
resultDDL - STRING

Rule - 1d(5, 1)

ruleResults

Rule Set - 1d(3, 2)

ruleResult - '4304140.23414000'\n

IRt = 0GI(8, 1) resultDDL - DECIMAL(20,18)

You can also use the typedExpressionRunner, which saves the results of expressions with the same type.

-15/88 - Copyright @ 2022 - UBS AG

2.3.4 QualityExpressions - ExpressionRunner

Example Usage: Instead of checking if something exists in a view in a rule, then using the view's value in an Output expression,
use typedExpressionRunner to save the lookup value directly. The rule can check if rule result is null, this can noticeably speed

up view heavy queries.

What is stored: For a type of STRUCT

Rule - I1d(3, 3) ruleResult - {key: 5435, value: RESULT2}

Rule Set - 1d(2, 1) ruleResults

ruleResult - {key: 32498, value: RESULT1}

Rule - 1d(4, 2)

Rule Suite - 1d(1, 1) ruleSetResults

Rule - I1d(5, 1) ruleResult - {key: 12550, value: RESULT4}

Rule Set - 1d(3, 2) ruleResults

Rule - Id(6, 1) ruleResult - {key: 79835, value: RESULT6}

Last update: October 24, 2025 15:00:20
Created: October 24, 2025 15:00:20

-16/88 - Copyright @ 2022 - UBS AG

2.4 Key SQL Functions to use in your Rules

2.4 Key SQL Functions to use in your Rules

2.4.1 Expressions with constants

* passed() - the value representing a passed rule
» failed() - the value representing a failed rule
* soft failed() - the value representing a failed rule which doesn't break the bank

« disabled rule() - the value representing a rule which has been disabled and should be ignored

2.4.2 Expressions which take expression parameters

 probability(x) - returns the probability (between 0.0 for a fail and 1.0 for pass) of a rule result
» pack ints(lower, higher) - returns a Long with both the lower and higher int's packed in, used for id matching

« soft fail(x) - if the expression doesn't result in a Passed it returns softFailed() which does not trigger an overall failed()
RuleSuite, this is ideal for when you want to flag a rule as passing a test you wish to query on later but do not care if it doesn't
pass. It can be treated as a "warn" or passed() expression.

e rule suite result details(ruleSuiteResult) - separates the RuleSuiteResult.overallResult from the rest of the structure should
it be needed typically this is done via the addOverallResultsAndDetailsF

 rule result(ruleSuiteResultColumn, packedRuleSuiteld, packedRuleSetld, packedRuleld) uses the packed long id's to retrieve
the integer ruleResult (or ExpressionRunner result) or null if it can't be found.

Last update: October 24, 2025 15:00:20
Created: October 24, 2025 15:00:20

-17/88 - Copyright @ 2022 - UBS AG

2.5 Reading & Writing RuleSuites

2.5.1 Reading & Writing RuleSuites

2.5 Reading & Writing RuleSuites

Typically you'd save the RuleSuite in configuration tables within a Database or Delta or some other easy to edit store.

Saving:

// The lambda functions from the RuleSuite
val lambdaDF = toLambdaDS(rules)
lambdaDF.write

// The rest of the rules
val ruleDF = toRuleSuiteDF(rules)
ruleDF.write

The field names used follow the convention of the default Product Encoder but can be renamed as desired.

Similarly, reading the rules can be as simple as:

val rereadwithoutLambdas = readRulesFromDF(ruleDF

The column names used during reading are not assumed and must be specified.

=

=

col("ruleSuiteId"),
col("ruleSuitevVersion"),
col("ruleSetid"),
col("ruleSetVersion"),
col("rulerd"),
col("ruleversion"),
col("ruleExpr")

reReadLambdas = readLambdasFromDF(lambdaDF.toDF(),
col("name"),

col("ruleExpr"),

col("functionId"),

col("functionversion"),

col("ruleSuiteId"),

col("ruleSuiteVersion")

reReadRuleSuite = integratelLambdas(rereadwithoutLambdas, reReadLambdas)

2.5.2 Versioned rule datasets

The user is completely free to chose their own version management approach, but the design is aimed at immutability and

evidencing.

-18/88 -

Copyright @ 2022 - UBS AG

2.5.2 Versioned rule datasets

To make things easy a simple scheme with library functions in the simpleVersioning package are provided:

-19/88 - Copyright @ 2022 - UBS AG

2.5.2 Versioned rule datasets

1 Rules can be added to rulesets (or indeed new rulesets) with just a single row within the input DF, this must increase the RuleSet
AND RuleSuites version:

ruleSuiteld

1

ruleSuiteVersion

1

ruleSetld

1

ruleSetVersion

1

ruleld ruleVersion ruleExpr

1 1 7
existing
rule rows

*/ true()

/* new
rule */

failed()

2. Similarly, you can change a rule by adding a new row which increments the Rule Id's, RuleSet AND RuleSuites versions:

ruleSuiteld

1

ruleSuiteVersion

1

ruleSetld

1

ruleSetVersion

1

ruleld ruleVersion ruleExpr

1 1 Vs
existing
rule row

*/ true()

1 2 /* new
version
of the
above
rule */

failed()

3. To delete a rule you can either use disabled() to flag the rule is inactivated or DELETED to flag the rule to be removed from a
RuleSet, as before each version must be incremented:

ruleSuiteld

1

1

ruleSuiteVersion

1

2

ruleSetld

1

1

ruleSetVersion

1

2

ruleld ruleVersion ruleExpr

1 1 Ve
existing
rule row
*/ true()

1 2 DELETED

4. OutputExpressions may be re-used with different versions (be it for QualityRules or QualityFolder), each rule row that needs to use
a later OutputExpression must increment all of it's Id versions. You may are advised to use lambdas to soften the impact:

ruleSuiteld
1

1

ruleSuiteVersion

1

2

ruleSetld
1

1

ruleSetVersion

1

2

ruleld ruleVersion ruleExpr ruleE
1 1 true() 60
1 2 true() 60

5. Lambda Expressions for a RuleSuite simply take the latest version for a given lambda id. If you want to delete a lambda (for
example you have used a name that is now an official Spark sql function) you can add a DELETED row for a given RuleSuite with a

higher version.

ruleSuiteld
1

1

ruleSuiteVersion
1

1

name
aToTrue
always1

aToTrue

always1

functionld
1

2

-20/88 -

functionVersion ruleExpr

1 /** oops */ a -> a

1 a->1

2 /** corrected */ a
-> true()

2 DELETED

Copyright @ 2022 - UBS AG

2.5.2 Versioned rule datasets

To use these you replace the above with:
import com.sparkutils.quality._
import simpleVersioning._
val rereadwWithoutLambdas = readVersionedRulesFromDF(ruleDF,
)
val reReadLambdas = readVersionedLambdasFromDF(lambdaDF.toDF(),
)

val outputExpressions = readVersionedOutputExpressionsFromDF(outputDF,

)
val rereadwithLambdas = integrateVersionedLambdas(rereadwWithoutLambdas, lambdas)
val (reread, missingOutputExpressions) = integrateVersionedOutputExpressions(rereadwithLambdas, outputExpressions)

The "readVersioned" functions modify the dataframe per the above logic to create full sets of ruleSuiteld + ruleSuiteVersion
pairs.

The "integrateVersioned" functions will first try the same ruleSuiteld + ruleSuiteVersion pairs and were not present will take the
next lowest available version. This runs on the assumption you if didn't need to change any OutputExpressions for a new
ruleSuite version why should you need to create fake entries.

Last update: October 24, 2025 15:00:20
Created: October 24, 2025 15:00:20

-21/88 - Copyright @ 2022 - UBS AG

2.6 Running Quality on Databricks

2.6 Running Quality on Databricks

The aim is to have explicit support for LTS', other interim versions may be supported as needed.

2.6.1 Running 3.1 builds on Databricks Runtime 9.1 LTS

Use the 9.1.dbr build / profile, the artefact name will also end with 9.1.dbr. OSS 3.1 do not need to worry about this and should
not use this profile.

Databricks has back-ported TreePattern including the final nodePatterns in HigherOrderFunction and 3.2's Conf class. As such
very old versions of non-opensource Quality (<=0.5.0) will fail with AbstractMethodError's when lambda's are used are 9.1 as
the OSS binary version of HigherOrderFunction does not have nodePattern. Similarly, the quality testshade jar must use the
9.1.dbr version due to Conf changes.

The 9.1.dbr build class files are built on the fake TreePattern and HigherOrderFunction present in the 9.1.dbr-scala source
directory, they are however removed in the jar.

ResolveTableValuedFunctions and ResolveCreateNamedStruct are removed from resolveWith as they are binary incompatible
with OSS. This does not seem to effect building namedstructs using resolveWith.

2.6.2 Running 3.2.1 builds on Databricks Runtime 10.4
Use the 10.4.dbr build / profile, the artefact name will also end with 10.4.dbr.

DBR 10.4 backports canonicalisation changes which allow Quality and any other code using explode and arrays to functionally
run. Performance is still known to be affected. These fixes are not present in the 3.2.1 OSS release, although performance
improvements may be back-ported.

ResolveTables, ResolveAlterTableCommands and ResolveHigherOrderFunctions are removed from resolveWith as they are binary
incompatible with OSS.

&ly 10.4 LTS is supported

10.2 version support was removed in 0.0.1

2.6.3 Running 3.3.0 builds on Databricks Runtime 11.3 LTS

Use the 11.3.dbr build / profile, the artefact name will also end with 11.3.dbr. Due to a backport of SPARK-39316 only 11.3 LTS
is supported (although likely 11.2 will also run), this changed the result type of Add causing incorrect aggregation precision via
aggExpr (Sum and Average stopped using Add for this reason).

2.6.4 Running on Databricks Runtime 12.2 LTS

DBR 12.2 backports at least SPARK-41049 from 3.4 so the base build is closer to 3.4 than the advertised 3.3.2. Building/Testing
against 3.3.0 is the preferred approach for maximum compatibility.

2.6.5 Running on Databricks Runtime 13.0

As of 6th June 2023 0.0.2 run against the 12.2.dbr LTS build also works on 13.0.

2.6.6 Running on Databricks Runtime 13.1/13.2

13.1 backports a number of 3.5 oss changes, the 13.1.dbr build must be used. The 13.1.dbr build is also successfully tested
against 13.2 DBR.

-22/88 - Copyright @ 2022 - UBS AG

https://issues.apache.org/jira/browse/SPARK-39316
https://issues.apache.org/jira/browse/SPARK-41049

2.6.7 Running on Databricks Runtime 13.3 LTS

’ﬁne 13.1/2 runtimes, given the LTS version, are deprecated and will be removed in 0.1.4.

2.6.7 Running on Databricks Runtime 13.3 LTS

13.3 backports yet more 3.5 so the 13.3.dbr build must be used.

2.6.8 Running on Databricks Runtime 14.0/14.1

14.0 and 14.1 can be used with the 14.0.dbr runtime, 14.2 however is not compatible, it back-ports two changes that render
Quality 0.1.3 impossible to run:

1. 44913 - StaticInvoke has changed breaking frameless binary compatibility

2. ResolveReferences now takes catalogue as a parameter

>
'ﬂle 14.0/1 runtimes, given the LTS version, are deprecated and will be removed in 0.1.4.

2.6.9 Running on Databricks Runtime 14.3 LTS
14.3, in addition to the 14.2 StaticInvoke and ResolveReferences changes also implements a new VarianceChecker that requires
a new 14.3.dbr runtime.
2.6.10 Running on Databricks Runtime 15.4 LTS
Supported as of 0.1.3.1.
15.4 LTS now requires its own runtime if you are using rng functions as Databricks introduced a breaking change in optimisation
of Nondeterministic functions (which relies on a newly introduced Expression.nonVolatile field not present in OSS Spark)
2.6.11 Running on Databricks Runtime 16.4 LTS
Supported as of 0.1.3.1.
16.3 Introduced a number of API changes, Stream is returned in some unexpected forcelnterpreted cases, and
UnresolvedFunction gets a new param.
2.6.12 Running on Databricks Runtime 17.3 LTS
Supported as of 0.1.3.1.
17.3, in addition to Spark 4 usage, introduced a binary incompatible change to NamedExpressions not present in the OSS
codebase.
2.6.13 Testing out Quality via Notebooks

You can use the appropriate runtime quality testshade artefact jar (e.g. DBR 11.3) from maven to upload into your workspace /
notebook env (or add via maven). When using Databricks make sure to use the appropriate Version.dbr builds.

Then using:

import com.sparkutils.quality.tests.TestSuite
import com.sparkutils.qualityTests.SparkTestUtils

SparkTestUtils.setPath("path_where_test_files_should_be_generated")

TestSuite.runTests

in your cell will run through all of the test suite used when building Quality.

-23/88 - Copyright @ 2022 - UBS AG

https://s01.oss.sonatype.org/content/repositories/releases/com/sparkutils/quality_testshade_11.3.dbr_3.3_2.12/

2.6.13 Testing out Quality via Notebooks

In Databricks notebooks you can set the path up via:

val fileLoc = "/dbfs/databricks/quality_test"
SparkTestUtils.setPath(fileLoc)

Ideally at the end of your runs you'll see - after 10 minutes or so and some stdout - for example a run on DBR 17.3 provides:

Running: ruleEngineSuiteVersionedRoundTripsDF(com.sparkutils.qualityTests.VersionSerializingTest), finished in: 5s
Time: 765.281
OK (431 tests)

Finished. Result: Failures: 0. Ignored: 0. Tests run: 431. Time: 765281ms.
import com.sparkutils.quality.tests.TestSuite

import com.sparkutils.qualityTests.SparkTestUtils

fileLoc: String = /dbfs/databricks/quality_test

Last update: October 24, 2025 15:00:20
Created: October 24, 2025 15:00:20

-24/88 - Copyright @ 2022 - UBS AG

2.7 Running Quality on Fabric

2.7 Running Quality on Fabric

Fabric support has been added since 0.1.3.1 and, at time of the 1.3 runtime, follows the OSS Spark codebase. Other OSS stack to
Synapse/Fabric runtimes may similarly "just" work.

2.7.1 Running on Fabric 1.3

Use the OSS 3.5.0 build and testShades.

2.7.2 Testing out Quality via Notebooks
This behaves the same way as per Databricks with one notable exception, System.out is not redirected so you also need:

// in case it's needed again
val ogSysOut = System.out
System.setOut(Console.out)

before running tests to see test progress.

Last update: October 24, 2025 15:00:20
Created: October 24, 2025 15:00:20

-25/88 - Copyright @ 2022 - UBS AG

3. About

3. About

3.1 History

3.1.1 Why Quality?

When looking at the Data Quality options for a data mesh standard runtime offering we identified gaps in the available platforms,
so we asked:

What would our Data Quality library look like?

We ended up with a highly peformant and extensible row-level SQL based rule engine with low storage costs and a high degree of
optimsation for both Spark and Databricks Runtimes.

3.1.2 Gaps in existing Spark Offerings

Deequ and databricks dq were unsuitable for the meshes requirements, crucially these tools (and others such as OwlDQ) could
not run at low cost with tight SLAs, typically requiring processing the data once to get DQ and then once more to save with DQ
information or to handle streamed data, not too surprising given their focus on quality across large data sets rather than at a row
processing level as a first class citizen. An important use case for DQ rules within this mesh platform is the ability to filter out
bad rows but also to allow the consumer of the data to decide what they filter, requiring the producers results to ideally be stored
with data rows themselves. Additionally, and perhaps most importantly, they do not support arbitrary user driven rules without
recoding.

As such our notional library needs to be:

« fast to integrate into existing Spark action without much overhead

 auditable, it should be clear which rule generated which results

» capable of handling streamed data

 capable of being scripted

* integrate with DataFrames directly, also allowing consumer driven rules in addition to upstream producer DQ

* be able to fit results into a single field (e.g. a map structure of name to results) stored with the row at time of writing the
results

3.1.3 Resulting Solution Space

In order to execute efficiently with masses of data the calculation of data quality must scale with Spark, this requires either map
functions, UDFs or better still Catalyst Expressions, enabling simple SQL to be used. Storage of results for a row could be json,
xml or using nested structures.

The evaluation of these solutions can be found in the next sections.

3.1.4 How did Rules and Folder come about?

Whilst developing a bookkeeping application a need for simple rules that generate an output was raised. The initial approach
taken, to effectively generate a case statement, ran into size and scale limitations. The architect of the application asked - can
you have an output sql statement for the DQ rules? The result is QualityRules, although it should probably be called
QualityCase...

QualityFolder came from a related application which had a need to transform data - providing defaulting in some circumstances -
but still had to be auditable and extensible as QualityRules was.

-26/88 - Copyright @ 2022 - UBS AG

https://github.com/awslabs/deequ
https://github.com/databrickslabs/dataframe-rules-engine

3.1.4 How did Rules and Folder come about?

Last update: October 24, 2025 15:00:20
Created: October 24, 2025 15:00:20

-27/88 - Copyright @ 2022 - UBS AG

3.2 Performance Choices

3.2 Performance Choices

3.2.1 How should rules be evaluated?

Performance wise there is a clear winner as to approach for generating results:

Line Chart Bar Chart Show Confidence Interval @ Permalink

130% g ldCount — date

)\e\ 27
1204 = 2020-04-26 12:50:44 ...
110
100
90
80
704

60q

504

404

304

204

104

rulesetCount
D T T T T T T T T T T T T 1

2 4 6 g 10 12 14 16 18 20 22 24 26

The green row is using the map function which is unfortunately the most straightforward to program. The blue is the baseline of
processing a row without DQ and the orange is using withColumn.

withColumn can use UDFs or inbuilt Catalyst style functions - the latter giving better performance and ability to more naturally
integrate with spark, this review echos the findings and hinting at the effects of catalyst.

Overall storage winner is nested columns, it has lower storage costs, is as fast as json to serialize (via an Expression) and
faster to query with predicate push down support for faster filtering. Details of the analysis are below.

](ote

Using withColumn is strongly discouraged, it very quickly introduces performance issues in spark code, prefer to use select and the
Quality transform functions. A large part of the performance hit for using UDFs over Expressions is due to the conversion from user
types to InternalRow - this cannot be avoided.

Catalyst Expression Performance

This diagram illustrates the overhead of cost of using Expressions using a simulated complexity of rule suites with increasing
number of column checks (¢ here is the column number, for a simple even check): ($c¢ % 2) =0

- 28/88 - Copyright @ 2022 - UBS AG

https://medium.com/@fqaiser94/udfs-vs-map-vs-custom-spark-native-functions-91ab2c154b44

3.2.1 How should rules be evaluated?

260 fiel

ms

240+

220

200+

180

160

140

1204

100

80

60

40+

20+

ant

2 7 12 17 22 27

This measurement against 1k rows shows for the last column 230ms for 27 rules each with 27 columns applied, i.e. 0.23 ms per
row for 84 rules total (albeit simple rules) on a single 4 core machine (24G heap). Orange representing the default compiled
evaluations.

However, this doesn't illustrate very well how things can scale. Running the 27 rules against 1m rows we see:

-29/88 - Copyright @ 2022 - UBS AG

3.2.1 How should rules be evaluated?

ms

80,000

70,000

60,000

50,000

40,000 +

30,000

20,000

10,000

27

with a mean time of 80,562ms for 1m rows that's 0.08ms per row for 27 rules, again orange representing the default options for
compilation. Conversely, the same test run against 1m rows without rules has a mean of 14,052 - so 66,510ms overhead for
processing 27m rules (i.e. 0.0025ms per simple rule).

Stepping the complexity up a bit to 150 columns at 100k (24G ram) with a baseline no rules time of 15,847ms. Running with
rules gives:

- 30/88 - Copyright @ 2022 - UBS AG

3.2.1 How should rules be evaluated?

200,000 3

ms

180,000

160,000

140,000

120,000 -

100,000

80,000 -

60,000

40,000

20,000 -+

150

so for compiled at a mean of 174,583ms we have 15m rules run at 0.011ms per rule. So although increased rule count obviously
generates more work the overhead is still low per each rule even with larger counts and the benefit of the default (orange)
compilation is visible (see the note at the bottom for when this may not be the case).

When using RuleEngineRunners you should try to re-use output expressions (RunOnPassProcessor) wherever possible to improve
performance.

>
ﬂ)metimes Interpreted Is Better

For very large complex rules (tested sample is 1k rules with over 50k expressions - over 30s compilation for a show and write)
compilation can dominate time, as such you can set forceRunnerEval to true on RuleRunner and RuleEngineRunner to skip
compilation. While compilation can be slow the execution is heavily optimised with minimal memory allocation, as such you should
balance this out when using huge RuleSuites.

Qsabling compilation entirely is not a great idea

Disabled generation, via ruleRunner(ruleSuite, compileEvals = false, forceRunnerEval = true), takes 208,518ms for 150 rules over
100k data - 34s longer than the default, this of course adds up fast over millions of rows.

Last update: October 24, 2025 15:00:20
Created: October 24, 2025 15:00:20

-31/88 - Copyright @ 2022 - UBS AG

3.2.2 How should rule results be stored? - JSON vs Structures

3.2.2 How should rule results be stored? - JSON vs Structures

3
I(ote

While Jackson is faster than circe serialization for JSON it doens't serialize easily so only used for comparison as its the fastest
possible serialization framework.

UDF Created Structures

When serializing rule results to Nested Rows via UDF struct creation (shown as Orange) the results are very expensive, the more
complex the rule setup the worse the performance. In comparison Jackson (shown as blue) keeps a low cost as it's just a string
(the cost instead is in parsing, storage and filtering)

14005 2 fieldCount — date
2
2020.04-20 12:20:26 ..
1,200
2020.04-20 12:20:26 ..
1,000 2020-04-29 12:20:26 ..
2020.04-20 12:20:26 ..
800
2020.04-20 12:20:26 .D
27
600 2020-0428 12:20:25 [
400+ ‘
200+
0 r ol nt
2 7 12 17 22 27

Expression Created Structures

When serializing rule results with a custom Expression (shown as orange, using eval only - without custom compilation), Jackson
(shown as blue) based serialisation looses it's clear lead with Expressions closing the gap as complexity increases:

- 32/88 - Copyright @ 2022 - UBS AG

3.2.2 How should rule results be stored? - JSON vs Structures

fie

ms

500

450+

400

350+

300+

250

200+

150+

100 +

504

04 G ant

Filtering Costs

Filtering on a nested column with deep queries (shown in red) is as expected faster the same query with a json structure. Nested
predicates can be pushed down to the underlying storage for efficient querying.

- 33/88 - Copyright @ 2022 - UBS AG

3.2.2 How should rule results be stored? - JSON vs Structures

rules

ms

4,000
3,500
3,000
2,500
2,000
1,500 -
1,000 -

500+

](ote

Depending on the Databricks runtime used the benefit from seperating the overallResult field to a top level field can be 10-20%
faster. While each new release of Spark and DBR closes this gap it is recommended to use addOverallResultsAndDetailsF to split the
fields.

This not only improves filter speed but also benefits with a simpler filter sql.

Structure Model - storage costs

A naive structure representing RuleSuite, RuleSet and Rule results is actually less efficient than storage of JSON, however the
current compressed model used by Quality has low overhead for even complex results.

Last update: October 24, 2025 15:00:20
Created: October 24, 2025 15:00:20

- 34/88 - Copyright @ 2022 - UBS AG

3.3 Changelog

3.3 Changelog

0.1.3.1 24th October, 2025

This is the last release of 2.4, 3.0 is deprecated as of this release, similarly, Databricks versions 9.1 through to 11.3 are also now
deprecated and unsupported functionality (fixes for #84 will be gladly accepted), 12.2 support will continue.

#95 - DBR 17.3 Support - Databricks introduced a binary change to NamedExpression

#85 - Processor optimisation to provide a passed result

#83 - Processor optimisations for stateless and Higher Order Functions

#82 - Wholestage codegen support for Correlated Subqueries, improved support for pass-through fields from plans
#81 - Enable Quality row level runners to be used outside a spark runtime (still requires spark to build of course)
#78 - Allow extra plans to be added after a rewrite, ConstantFolding as a default given it gives a slight boost.

#76 - DBR 16.3 support - Databricks introduced a number of API changes not found in Spark 4, extra UnresolvedFunction
params. (also includes #75)

#75 - DBR 15.4 support - Databricks introduced nonVolatile, a breaking change affecting all StatefulLike/Nondeterministic (rngs,
uuids, unique id), there is also a regression wrt interpreted Spark encoders (returning Stream and incorrect results) - the test
cases have moved to Frameless encoders.

#68 - Test setup improvements for running testShades on Fabric (reduced logging and share Databricks behaviour)
#69 - Use different scopes for OSS testShade builds for Fabric testing (bug in snakeyml usage)

#70 - map with can now be used in groupBy aggregations

#71 - Leverage Spark Sub-expression Elimination:

In order to ensure behavioural compatibility this is not enabled on runners by default in 0.1.3.1.

To enable elimination ensure resolveWith = None (the default and not available in ExpressionRunner), compileEvals = false and
forceRunnerEval = false (the default)

As part of this optimisation LambdaFunctions are rewritten and expanded as normal expression trees by a plan re-write. If this
causes problems a /* USED_AS_LAMBDA */ comment may be added to the LambdaFunction definition to disable this expansion for
the entire sub-tree.

The entire rewrite plan must be enabled by calling com.sparkutils.quality.enableFunNRewrites() within your SparkSession or by
default via the Quality extensions.

NB The use of re-writes with 3.2.x has been identified in one test case (testSimpleProductionRules) as problematic for codegen,
please use more recent Spark versions.

#73 - Spark 4.0 support (with an upgrade to Shim 0.2.0 using sparkutils.frameless 1.0.0)

0.1.3 4th October, 2024
#53 - Docs parser is now more forgiving, empty descriptions are tolerated and normal scaladoc syntax is allowed
#50 - typedExpressionRunner - audited capture of expressions with the same type
#51 - Spark 3.5.0 support - NOTE ViewLoaderAnalysisException and MissingViewAnalysisException now have Exception causes
#27 - Delta 3.0.0 (Spark 3.5.0) support - compatible version

#55 - DBR 14.0/1 - Snake Yaml 2.0 support

- 35/88 - Copyright @ 2022 - UBS AG

https://github.com/sparkutils/quality/milestone/10?closed=1
https://github.com/sparkutils/quality/issues/84
https://github.com/sparkutils/quality/issues/95
https://github.com/sparkutils/quality/issues/85
https://github.com/sparkutils/quality/issues/83
https://github.com/sparkutils/quality/issues/82
https://github.com/sparkutils/quality/issues/81
https://github.com/sparkutils/quality/issues/78
https://github.com/sparkutils/quality/issues/76
https://github.com/sparkutils/quality/issues/75
https://github.com/sparkutils/quality/issues/75
https://github.com/sparkutils/quality/issues/68
https://github.com/sparkutils/quality/issues/69
https://github.com/sparkutils/quality/issues/70
https://github.com/sparkutils/quality/issues/71
https://github.com/sparkutils/quality/issues/73
https://github.com/sparkutils/quality/milestone/8?closed=1
https://github.com/sparkutils/quality/issues/53
https://github.com/sparkutils/quality/issues/50
https://github.com/sparkutils/quality/issues/51
https://github.com/sparkutils/quality/issues/27
https://github.com/sparkutils/quality/issues/55

3.3 Changelog

#58 - Migrate custom runtime usage to Shim
#59 - DBR 13.3 LTS support
#57 - DBR 14.3 support

#61 - Use sparkutils frameless for 3.5, 13.3, 14.x builds - Due to encoding and shim changes this frameless fork version is not
binary compatible with typelevel frameless proper

#62 - SPARK-47509 workaround for Subqueries in lambdas - most common patterns are supported with 4.0 / 14.3 DBR

#63 - Use actual struct functions where possible for drop field/update field functions - required due to 14.3 DBR introduced plan
on local relations

#66 - Bug fix - softFail result handling was double encoded - softFail result type is changed to double (breaking)

#65 - Bug fix - Incorrect OverallResult and string result processing

0.1.2.1 4th September, 2023

Maven Central build issues, code wise the same as 0.1.2.

0.1.2 4th September, 2023

#48 - Bug fix - Enable Sub Queries in all runner types

0.1.1 oth July, 2023
#472 - Improve expression runner to store yaml, unlike json, to yaml and from yaml allow complete support for roundtripping of
Spark data types
0.1.0 10th June, 2023
#29 - Quality OptimzerRule's run with Databricks sql display
#35 - agg _expr and associated lambda support in the functions package
#36 - improved update field, added drop field based on the Spark withField (3.4.1 impl)
#34 - simplified quality package usage, column functions are now under the functions package.
#32 - expressionRunner - saves the results of expressions as strings, suitable for aggregate statistics
#28 - rule result function - retrieves a rule result directly from a dq or expressionRunner result
#15 - Addition of the loadXConfigs and loadX functions for maps and blooms, simplifying configuration management
#24 - Remove saferld / rowid functions - use unique id where required
#18 - ViewLoader - simple view configuration via DataFrames
#30 - 3.3.2 and 3.4.1 builds - simple version bumps

#20 - 3.5.0 starting support

0.0.3 17th June, 2023

#25 - Use builtIn function registration by default - allows global views to be created using Quality functions

0.0.2 2nd June, 2023

#16 - Remove winutils requirements for testing and usage

- 36/88 - Copyright @ 2022 - UBS AG

https://github.com/sparkutils/quality/issues/58
https://github.com/sparkutils/quality/issues/59
https://github.com/sparkutils/quality/issues/57
https://github.com/sparkutils/quality/issues/61
https://github.com/sparkutils/quality/issues/62
https://github.com/sparkutils/quality/issues/63
https://github.com/sparkutils/quality/issues/66
https://github.com/sparkutils/quality/issues/65
https://github.com/sparkutils/quality/milestone/7?closed=1
https://github.com/sparkutils/quality/issues/48
https://github.com/sparkutils/quality/milestone/6?closed=1
https://github.com/sparkutils/quality/issues/42
https://github.com/sparkutils/quality/milestone/3?closed=1
https://github.com/sparkutils/quality/issues/29
https://github.com/sparkutils/quality/issues/35
https://github.com/sparkutils/quality/issues/36
https://github.com/sparkutils/quality/issues/34
https://github.com/sparkutils/quality/issues/32
https://github.com/sparkutils/quality/issues/28
https://github.com/sparkutils/quality/issues/15
https://github.com/sparkutils/quality/issues/24
https://github.com/sparkutils/quality/issues/18
https://github.com/sparkutils/quality/issues/30
https://github.com/sparkutils/quality/issues/20
https://github.com/sparkutils/quality/milestone/5?closed=1
https://github.com/sparkutils/quality/issues/25
https://github.com/sparkutils/quality/milestone/2?closed=1
https://github.com/sparkutils/quality/issues/16

3.3 Changelog

#13 - Support 3.4's sub query usage in rules/trigger, output expressions and lambdas

#12 - Introduce the use of underscores instead of relying on camel case for function sql names, inline with Spark built-in
functions

#10 - Base64 functions added for RowID encoding and decoding via base64 (more suitable for BI tools)

#9 - Add AsymmetricFilterExpressions with AsUUID and IDBase64 implementation, allows expressions used in field selects to be
reversed, support added for optimiser rules through the SparkExtension

#8 - Add set syntax for easier defaulting sql, removing duplicative cruft from intention

#7 - SparkSessionExtension to auto register Quality functions - does not work in 2.4, starting with this release 2.4 support is
deprecated

#6 - Simple as_uuid function
#5 - Spark 3.4 and DBR 12.2 LTS support

#4 - comparableMaps / reverseComparableMaps functions, allowing map comparison / set operations (e.g. sort, distinct etc.)

0.0.1 8th March, 2023
Initial OSS version.

(many internal versions in between)

the Quality exploration starts 25th April, 2020

Start of investigations into how to manage DQ more effectively within Spark and the mesh platform.

Last update: October 24, 2025 15:00:20
Created: October 24, 2025 15:00:20

-37/88 - Copyright @ 2022 - UBS AG

https://github.com/sparkutils/quality/issues/13
https://github.com/sparkutils/quality/issues/12
https://github.com/sparkutils/quality/issues/10
https://github.com/sparkutils/quality/issues/9
https://github.com/sparkutils/quality/issues/8
https://github.com/sparkutils/quality/issues/7
https://github.com/sparkutils/quality/issues/6
https://github.com/sparkutils/quality/issues/5
https://github.com/sparkutils/quality/issues/4
https://github.com/sparkutils/quality/milestone/1?closed=1

4. Model

4. Model

4.1 Rule Model

4.1.1 Rules

Quality RuleSuite Class Model

©Versionedld
ointid

o int version

4

© LambdaFunction

o string lambdaExpression
o string name
o Versionedid id

@ Expression

@ RunOnPassProcessor

\

\

o Int salience
o Expression expression

\\
___J Only used with Spark Catalyst
- Y P y
"] QualityEngine Expression
1

Global Lambdas

VersionedIDs are used throughout, changes to a Rule should imply a new Rule version, a new RuleSet version and a new

RuleSuite version.

ersioned RuleSuite or

When using
QualityEngine

© Rule

RunOnP

o LogicRule rule
o Versionedld version

© runOnPassProcessor

assProcessor

38/88 -

=5
-

LogicRules may use
Lambdas within the

same RuleSuite

@ LogicRule
o Expression expression

© RuleSet

o Versionedld id
o Seq<Rule> rules

[

© RuleSuite

o Versionedld id

o Seq<RuleSet> ruleSets

o Seq<lLambdaFunction>
lambdaFunctions

Copyright @ 2022 - UBS AG

4.1.2 Rule Results

RunOnPassProcessor (output expressions) should only be provided when using the ruleEngineRunner and are treated, like
Lambdas, as top level unique concepts. You should organise using output expressions wherever possible as it's not only easier to

conceptualise but it's also faster.

4.1.2 Rule Results

Quality Results Model

©vers\'onedld
ointid
o int version

/ © RuleSetResult

o Versionedid id

[©sotraiied @ isablechule
‘ ‘
‘ ‘

RuleResult’

©

78 S
~_ —
Singleton ~~_singleton ~~.Singleton
~ N
.
(© RuleResultwithProcessor N\
o RuleResult ruleResult © Passed l@Failed

RunOnPassProcessor
runOnPassPro r

© Probability
o double percentage
)

o RuleResult overallResult
| , Map<Versionedid,
RuleResult> ruleResults

© IdTriple

o Versionedld ruleSuiteld
o Versionedld ruleSetid
o Versionedld ruleld

/ \
\ \ [=" =" |
[: I
| \ N] |
| A\ © RuleSuiteResult
. \
Only when using (© salientResutt \ o Versionedid id
N SERRSREraritt Pea— \ o RuleResult overallResult
ot fnuselence Map<Versionedid,
debugMode=true o OutputExpression result i Ru\zsetResulb .
5 » TUleSetResults
/ Y
/ . \
/ ,//'// ~ \
/ - ~ \ /
@ RuleEngineDebugResult © RuleEngineResult
RuleSuiteResult

© rulesuiteResults
o IdTriple salientRule
o OutputExpression result

—— null when in debugMode=true -

RuleSuiteResult
© rulesuiteResults _—
o IdTriple salientRule—"
o Array<SalientResult> result

» SoftFailed results do not cause the RuleSet or RuleSuite to fail

* DisabledRule results also do not cause the RuleSet or RuleSuite to fail but signal a rule has been disabled upstream

* Probability results with over 80 percent are deemed to have Passed, you may override this with the

RuleSuite.withProbablePass function after creating the RuleSuite.

RuleResultWithProcessor is only used when using the ruleEngineRunner and is not returned in the column, rather the result of

the expression is - shown above as call to "data".

Last update: October 24, 2025 15:00:20
Created: October 24, 2025 15:00:20

- 39/88 -

Copyright @ 2022 - UBS AG

4.2 Storage Model

4.2 Storage Model

Nested columns, with nested columns, this lets you use Spark SQL to do filters and have predicate pushdown. Sample filter:

df.select(expr("filter (map_values(DataQuality.ruleSetResults),
ruleSet -> size(filter(map_values(ruleSet.ruleResults),
result -> probability(result) > 0.3)) > 0)").as("filtered"))

actual type:

struct<id: LongType, overallResult: IntegerType,
ruleSetResults: map<LongType,
struct<overallResult: IntegerType,
ruleResults: map<LongType, IntegerType>>>>

Alternatively when creating with addOverallResultsAndDetails you have the
overallResult: IntegerType

moved to the top level, leaving

details: struct<id: LongType,
ruleSetResults: map<LongType
struct<overallResult: IntegerType,
ruleResults: map<LongType, IntegerType>>>>

4.2.1 Where have all the Versionlds and RuleResults gone?

In order to optimise storage and marshalling the Versionld parts are packed into a single LongType. RuleResults are similarly

encoded into an IntegerType:

* Failed => FailedInt // O

» SoftFailed => SoftFailedInt // -1
e Disabled => DisabledInt // -2

* Passed => PassedInt // 100000

* Probability(percentage) => (percentage * PassedInt).toInt

When the developer wishes to retrieve the objects they may use the encoders directly:

// frameless is used to encode

import frameless._

// imports the encoders for RuleSuiteResult

import com.sparkutils.quality.implicits._

// derive an encoder for the pair with a user type and the RuleSuiteResult for a given row
implicit val enc = TypedExpressionEncoder[(TestIdLeft, RuleSuiteResult)]

// select the fields needed for the user type and the DataQuality result (or details with RuleResult, RuleSuiteResultDetails for separate overall results and

details)

val ds = df.selectExpr("named_struct('left_lower', "1°, 'left_higher', "27)", "DataQuality").as[(TestIdLeft,

the developer can then integrate the data quality results alongside their relevant data.

RuleSuiteResult)]

Last update: October 24, 2025 15:00:20
Created: October 24, 2025 15:00:20

-40/88 -

Copyright @ 2022 - UBS AG

4.3 Meta Rulesets?

4.3 Meta Rulesets?

Quality introduces a "Meta Ruleset" approach for added automation. Meta Rule sets evaluate each column of a DataFrame to see
if a Rule should be generated for that column.

Null checks, type checks etc. may all be applied generically without laboriously copying the rule for each applicable column, just
define a single argument lambda expression. In order for this to work and be extensible you require stable ordering for each
column used.

// if you wish to use Meta Rule Sets
val metaRuleSets = readMetaRuleSetsFromDF(metaRuleDF,
// an sql filter of the schema from a provided dataframe - name
//datatype (as DDL) and nullable can be filtered
col("columnFilter"),
// single arg lambda to apply to all fields from the column filter
col("ruleExpr"),
col("ruleset1id"),
col("ruleSetVersion"),
col("ruleSuiteId"),
col("ruleSuiteVersion")

)

// make sure we use the correct rule suites for the dataset, e.g.
val filteredRuleSuites: RuleSuiteMap = Map(ruleSuiteId -> rules)

val theDataframe = sparkSession.read.parquet("theFilePath")

// Guarantee each column always returns the same unique position
val stablePositionsFromColumnNames: String => Int = ?2??

// filter theDataframe columns and generate rules for each Meta

// RuleSet and re-integrate them

val newRuleSuiteMap = integrateMetaRuleSets(theDataframe, filteredRuleSuites,
metaRuleSets, stablePositionsFromColumnNames)

An optional last paramater for integrateMetaRuleSets allows transformation of a generated column dataframe, allowing joins
with other lookup tables for the column definition or applicable rules to generate for the column for example.

Last update: October 24, 2025 15:00:20
Created: October 24, 2025 15:00:20

-41/88 - Copyright @ 2022 - UBS AG

5. Advanced Usage

5. Advanced Usage

5.1 Bloom Filters

Bloom Filters are probabalistic data structures that, for a given number of items and a false positive probability (FPP) provides a
mightContain function. This function guarantees that if an item is not in the bloom filter it will return false, however if it returns
true this is to a probability defined by the FPP value.

In contrast to a Set which requires the items (or at least their hash values) to be stored individually blooms make use of multiple
blocks and apply bit setting based on hashes of the input value over some function. These resulting blocks and bitsets are far
smaller in memory and storage usage than a typical set. For example it's possible to store hundreds of millions of items within a
bloom and still keep within a normal Java byte array boundary.

This act of using bit flipping also allows blooms to be or'd for the same size and FPP, which is great for aggregation functions in
Spark.

Whilst blooms are great the guarantees break when:

1. The number of items far exceeds the initial size used to create the bloom - false is still guaranteed to not be present but the true
value will no longer represent FPP, the bloom has degraded

2. The number of bits required to store the initial number of items at the FPP exceed what can be represented by the bloom
algorithm.

If you attempt to store billions of items within a bloom at a high FPP you will quickly fall foul of 2, and this is easily done with
both the Spark stats.package and the current bloom filters on Databricks. This makes them next to useless for large dataset
lookups on typical bloom implementations.

5.1.1 How does Quality change this?

It can't change the fundamental laws of bloom filters, if you use the number of bits up your bloom filter is next to useless. You can
however add multiple Java byte arrays and bucket the hashes across them. This works great up to about 1.5b items in a typical
aggregation function within Spark, however Spark only allows a maximum of 2Gb for an InternalRow - of which aggregates are
stored in.

Quality provides three bloom implementations the Spark stats package, small - which buckets within an InternalRow (1.2-1.5b
items max whilst maintaining FPP) - and big which doesn't use Spark aggregations to store the results of aggregations but rather
a shared file system such as Databricks dbfs.

Both the small and big bloom functions use Parquet's bloom filter implementation which both significantly faster and has better
statistical properties than Sparks/Guavas or Breezes.

5.1.2 What are Bloom Maps?

Bloom Maps are identifiers to a bloom filter. The examples below show how to create the key is to use the SparkBloomFilter or
bloomFilter functions to provide the value and the FPP is required.

registerBloomMapAndFunction(bloomFilterMap)

Both registers the Bloom Map, the small bloom and big bloom aggregation functions and the probabilityIn function.

5.1.3 Using the Spark stats package

// generate a dataframe with an id column

val df = sqlContext.range(1, 20)

// build a bloomfilter over the id's

val bloom = df.stat.bloomFilter("id", 20, 0.01)

// get the fpp and build the map

val fpp = 1.0 - bloom.expectedFpp()

val bloomFilterMap = SparkSession.active.sparkContext.broadcast(Map("ids" -> (SparkBloomFilter(bloom), fpp)))

-42/88 - Copyright @ 2022 - UBS AG

5.1.4 Using the Quality bloom filters

// register the map for this SparkSession

registerBloomMapAndFunction(bloomFilterMap)

// lookup the result of adding column's a and b against that bloom filter for each row
otherSourceDF.withColumn("probabilityInIds", expr("probability_in(a + b, 'ids')"))

The stats package bloomFilter function has severe limitations on a single field and does not allow expressions but through the
SparkBloomFilter lookup function is integrated with Quality anyway.

5.1.4 Using the Quality bloom filters

The small and big bloom functions take a single expression parameter however it can be built from any number of fields or field
types using the hash with function.

» smallBloom(column, expected number of items, fpp) - an SQL aggregate function which generates a BloomFilter Array[Byte]
for use in probabilityln or rowlId:
val aggrow = orig.select(expr(s"small_bloom(uuid, $numRows, ©.01)")).head()
val thebytes = aggrow.getAs[Array[Byte]](0)
val bf = bloomLookup(thebytes)

val fpp = 0.99
val blooms: BloomFilterMap = Map("ids" -> (bf, fpp))

* bigBloom(column, expected number of items, fpp) - can only be run on large memory sized workers and executors and can
cover billions of rows while maintaining the FPP:
// via the expression
val interim = df.selectExpr(s"big_bloom($bloomOn, $expectedSize, $fpp, '$bloomId')").head.getAs[Array[Byte]](0)

val bloom = com.sparkutils.quality.BloomModel.deserialize(interim)
bloom.cleanupOthers()

val blooms: BloomFilterMap = Map("ids" -> (bloomLookup(bloom), fpp))
// via the utility function, defaults to 0.01 fpp

val bloom = bloomFrom(df, "id", expectedsize)
val blooms: BloomFilterMap = Map("ids" -> (bloomLookup(bloom), 1 - bloom.fpp))

In testing the bigBloom creation over 1.5b rows on a small 4 node cluster took less than 8m to generate, using a resulting bloom
however is far easier to load and distribute and constant time for lookups. Whilst the actual big bloom itself cannot be directly
broadcast only the file location of the resulting bloom is and each node on the cluster directly loads it from the ADLS (or other
hopefully fast store for the multiple GBs).

To change the base location for blooms use the sparkSession.sparkContext.setLocalProperty("sparkutils.quality.bloom.root") to
specify the location root.

5.1.5 Bloom Loading

The interface and config row data types is similar to that of View Loader with loadBloomConfigs accepting these additional
columns:

bigBloom: Boolean, value: String, numberOfElements: BIGINT, expectedFPP: DOUBLE

* bigBloom specifies which function should be used, when true the bigBloom algorithm will be used, when false the smallBloom.
« value is an expression string suitable for the bloom filter, the expression will not parse if the type is unsupported, complex

types will need special handling but it's typically possible to convert to an array of longs via hash functions such as hash with.

* numberOfElements is an estimated upper bound for the size of the bloom filter, too low, and many false possible results will be
generated

» expectedFPP is the starting percentage of expected percentage of false positives produced, or what can be tolerated, a value
of 0.01 implies 99% of the time you get a "should contain" result it will be accurate, and 0.01% of the time it won't be. When

using too small an numberOfElements the expected fpp cannot be met. bigBloom will attempt to use both to derive the optimal
size with the probability that the resulting fpp is different.

import sparkSession.implicits._

val (bloomConfigs, couldNotLoad) = loadBloomConfigs(loader, config.toDF(), expr("id.id"), expr("id.version"), Id(1,1),
col("name"),col("token"),col("filter"),col("sql"), col("bigBloom"),

-43/88 - Copyright @ 2022 - UBS AG

5.1.6 Expressions which take expression parameters

col("value"), col("numberOfElements"), col("expectedFPP")

)

val blooms = loadBlooms(bloomConfigs)

with couldNotLoad holding a set of configuration rows that aren't possible to load (neither a DataFrameLoader token nor an sql).
loadBlooms will process the resulting dataframe using bigBloom, value, numberOfElements and expectedFPP to create the
appropriate blooms. Views first loaded via view loader are available when executing the sql column (when token is null).
5.1.6 Expressions which take expression parameters

» probability in(content to lookup, bloomfilterName) - returns the fpp value of a filter lookup against the bloomFilter with
bloomFilterName in the registered BloomFilterMap, which works with the Spark stats package, small and big blooms.

Last update: October 24, 2025 15:00:20
Created: October 24, 2025 15:00:20

-44/88 - Copyright @ 2022 - UBS AG

5.2 Map Functions

5.2 Map Functions

A typical use case for processing DQ rules is that of cached value processing, reference data lookups or industry code checks etc.

Quality's map functions reproduce the result of joining datasets but guarantees in memory operation only once they are loaded,
no merges or joins required. However, for larger data lookups either Bloom Filters should be preferred or simply use joins.

Similarly, for cases involving more logic than a simple equality check you must use joins or starting in 3.4 (DBR 12.2) scalar sub
queries, see View Loader for a way to manage the loading of views.

5.2.1 Map Loading

The interface and config row data types is similar to that of View Loader with loadMapConfigs accepting these additional
columns:

val (mapConfigs, couldNotLoad) = loadMapConfigs(loader, config.toDF(), expr("id.id"), expr("id.version"), Id(1,1),
col("name"),col("token"),col("filter"),col("sql"),col("key"),col("value")

)

val maps = loadMaps(mapConfigs)

with couldNotLoad holding a set of configuration rows that aren't possible to load (neither a DataFrameloader token nor an sql).

loadMaps will process the resulting dataframe using key and value as sql expressions in exactly the same way as
mapLookupFromDFs, as such they must be valid expressions against the source dataframe. Views first loaded via view loader are
available when executing the sql column (when token is null).

5.2.2 Building the Lookup Maps Directly

In order to lookup values in the maps Quality requires a map of map id's to the actual maps.

// create a map from ID to a MapCreator type with the dataframe and underlying
// columns, including returning structures / maps etc.
val lookups = mapLookupsFromDFs(Map(

"countryCode" -> (() => {
val df = countryCodeCCY.toDF("country", "funnycheck", "ccy")
(df, column("country"), functions)("struct(funnycheck, ccy)"))

)
"ccyRate" -> (() => {
val df = ccyRate.toDF("ccy", "rate")
(df, column("ccy"), column("rate"))
1
))

registerMapLookupsAndFunction(lookups)

In the countryCode map lookup case we are creating a map from country to a structure (funnycheck, ccy), whereas the ccyRate
is a simple lookup between ccy and it's rate at point of loading.

Map creation is not lazy and is forced at time of calling the registerMap... function, for streaming jobs this may be unacceptable.
Prefer to use new map id's and merge old sets if you need to guarantee repeated calls to registerMapLookupsAndFunctions are
working with up to date data.

It's possible to have multiple fields used as the key, where all must match, just use struct in the same way as the value example
above.

3
qu)til

Repeated calls and streaming use cases have not been thoroughly tested, the Spark distribution method guarantees an object can be
broadcast but no merging is automatically possible, users would be required to code this by hand.

-45/88 - Copyright @ 2022 - UBS AG

5.2.3 Expressions which take expression parameters

5.2.3 Expressions which take expression parameters

* map lookup('map name', x) - looks up x against the map specified in map name, full type transparency from the underlying
map values are supported including deeply nested structures

// show the map of data 'country' field against country code and get back the currency
df.select(col("*"), expr("map_lookup('countryCode', country).ccy")).show()

* map contains(‘map name', x) - returns true or false if an item is present as a key in the map

Last update: October 24, 2025 15:00:20
Created: October 24, 2025 15:00:20

-46/88 - Copyright @ 2022 - UBS AG

5.3 Aggregation Functions

5.3 Aggregation Functions

5.3.1 Aggregation Functions

Quality adds a number of aggregation primitives to allow building across dataset functionality similar to Deequ and others but
philosophically staying true to the customisation approach used throughout the library.

You can aggregate using any number of agg expr columns:

» agg_expr(ddl type, filter, lambda sum, lambda result) - allows filter expressions to be used to build up aggregated BIGINT
(long) results with lambda functions, leveraging simple lambda functions (note count is currently only BIGINT / LongType):
// generates with an long id column from 1 to 20
val df = sparkSession.range(1, 20)
// filter odd numbers, add the them together with sumwith lambda for the
// sum, then using resultswith lambda variables divide them by the count
// of filtered rows
val res = df.select(expr("agg_expr('BIGINT', id % 2 > 0, sum_with(sum -> sum + id), "+
"results_with((sum, count) -> sum / count))").as("aggExpr"))

res.show() // will show aggExpr with 10.0 as a result,
// sum + count would show 110..

The filter parameter lets you select rows you care about to aggregate, but does not stop you aggregating different filters in
different columns and still process all columns in a single pass. The sum function itself does the aggregation and finally the result
function yields the last calculated result. Both of these functions operate on MAPs of any key and value type.

Spark lambda functions are incompatible with aggregation wrt. type inference which requires that the type is specified to
agg_expr, it defaults to bigint when not specified.

The ExpressionRunner provides a convenient way to manage multiple agg expr aggregations in a single pass action via a
RuleSuite, just like DQ rules.

5.3.2 Aggregation Lambda Functions
e sum_ with(lambda entry -> entry) - processes for each matched row the lambda with the given ddl type which defaults to
LongType
e results with(lambda (sum, count) -> ex) - process results lambda with sum and count types passed in.
e inc([expr]) - increments the current sum either by default 1 or by expr using type LongType

* meanF() - simple mean on the results, expecting sum and count type Long:

// generates with an long id column from 1 to 20

val df = sparkSession.range(1, 20)

// filter odd numbers, add the them together with inc lambda for the sum, then using meanF expression to divide them by the count of filtered rows
val res = df.select(expr("agg_expr(id % 2 > 0, inc(id), meanF())").as("aggExpr"))

res.show() // will show aggExpr with 10.0 as a result, sum + count would show 110..

* map with(keyExpr, x) - uses a map to group via keyExpr and apply x to each element:

// a counting example expr - group by and count distinct equivalent

expr("agg_expr('MAP<STRING, LONG>', 1 > @, map_with(date || ', ' || product, entry -> entry + 1), results_with((sum, count) ->

sum))").as("mapCountExpr")

// a summing example expr with embedded if's in the summing lambda for added fun

expr("agg_expr('MAP<STRING, DOUBLE>', 1 > 0, map_with(date || ', ' || product, entry -> entry + IF(ccy='CHF', value, value * ccyrate)),
return_sum())").as("mapSumExpr")

e return sum() - just returns the sum and ignores the count param, expands to results with((sum, count) -> sum)

5.3.3 Column DSL
The same functionality is available in the functions package e.g.:

import com.sparkutils.quality.functions._
val df: DataFrame = ...
df.select(agg_expr(DecimalType(38,18), df("dec").isNotNull, sum_with(entry => df("dec") + entry), return_sum) as "agg")

-47/88 - Copyright @ 2022 - UBS AG

5.3.4 Type Lookup and Monoidal Merging

5.3.4 Type Lookup and Monoidal Merging

This section is very advanced but may be needed in a deeply nested type is to be aggregated.

Type Lookup

agg expr, map with, sum with and return_sum all rely on type lookup. The implementation uses sparks in-built DDL parsing to
get types, but can be extended by supplying a custom function when registering functions e.g.:

registerQualityFunctions(parseTypes = (str: String) => defaultParseTypes(str).orElse(logic goes here) /* Option[DataType] */)

Monoidal Merging

Unlike type lookup custom merging could well be required for special types. Aggregation (as well as MapMerging and
MapTransform) require a Zero value the defaultZero function can be extended or overwritten and passed into registerFunctions
as per parseTypes. The defaultAdd function uses itself with an extension function parameter in order to supply map value
monoidal associative add.

]
](ote
This works great for Maps and default numeric types but it requires custom monoidal 'add' functions to be provided for merging

complex types.

Whilst zero returns a value to use as zero you may need to recurse for nested structures of zero, add requires defining Expressions
and takes a left and right Expression to perform it:

DataType => Option[(Expression, Expression) => Expression]

ﬁming

This is an area of functionality you should avoid unless needed as it often requires deep knowledge of Spark internals. There be
dragons.

Last update: October 24, 2025 15:00:20
Created: October 24, 2025 15:00:20

-48/88 - Copyright @ 2022 - UBS AG

5.4 User Defined Functions

5.4 User Defined Functions
Users may register Lambda Functions using the sql lambda syntax:

val rule = LambdaFunction("multvalccy", "(thevalue, ccy) -> thevalue * ccy", Id(1,2))
registerLambdaFunctions(Seq(rule))

they may be then called in rules (or within any SQL expressions), in this case value and ccyrate from the data frame are provided
to the function as parameters theValue and ccy:

val ndf = df.withColumn("newcalc", expr("multvalCCY(value, ccyrate)"))

The function parameter and return types are derived during the analysis phase, this may lead to errors if types do not match the
expressions upon an action only, such as writing or calling show.

>
qu)t(E

Whilst you are free to add lambdas when not using a RuleSuite the library will not ensure that only functions registered as part of a
RuleSuite are used in rules, such hygiene is necessarily left to the user.

LambdaFunctions may have any number of parameters e.g. given a greaterThan lambda:
(paraml, param2) -> paraml > param2
you would be able to call it with two expressions

greaterThan(coll, col2)

Single argument lambdas should not use brackets around the parameters and zero argument lambdas use no input or ->. In all
cases the lambda can use the attributes from the surrounding dataframe - it's effectively global, you cannot use variables from
surrounding / calling lambdas.

&n't use 'current'... as a lambda variable name on 2.4

Bizarrely this causes the parser to fail on 2.4 only, no more recent version suffers this. Same goes for left or right as names.

@.3.1 optimisations can be enabled

0.1.3.1 introduces the expansion of Qualitylambda functions, allowing sub expression elimination to take place. The entire rewrite
plan must be enabled by calling com.sparkutils.quality.enableFunNRewrites() within your SparkSession or by default via the Quality
extensions.

You can put the comment /* usep_As_LAMBDA */ in an individual rule definition to disable expansion for the entire user function
subtree. This is unlikely to be needed, but is provided to allow overriding should issues arise.

The use of re-writes with 3.2.x has been identified in one test case (testSimpleProductionRules) as problematic for codegen, please
use more recent Spark versions.

5.4.1 What about default parameter or different length parameter length Lambdas?

To define multiple parameter length lambdas just define new lambdas with the same name but different argument lengths. You
can freely call the same lambda name with different parameters e.g.:

val rule = LambdaFunction("multvalCCY", "multValCCY(value, ccyrate)", Id(1,2))

val rulel = LambdaFunction("multvalcCY", "thevalue -> multvalCCY(thevalue, ccyrate)", Id(2,2))
val rule2 = LambdaFunction("multvalccy", "(thevalue, ccy) -> thevalue * ccy", Id(3,2))
registerLambdaFunctions(Seq(rule, rulel, rule2))

-49/88 - Copyright @ 2022 - UBS AG

5.4.2 Higher Order Functions

// all of these should work

df.withColumn("newcalc", expr("multvalcCy()"))

df .withColumn("newcalc", expr("multvalcCY(value)"))

df .withColumn("newcalc", expr("multvalCCY(value, ccyrate)"))

5.4.2 Higher Order Functions

As Lambda's in Spark aren't first class citizens you can neither partially apply them (fill in parameters to derive new lambdas)
nor pass them into a lambda.

Quality experimentally adds three new concepts to the mix:

1. Placeholders - _() - which represents a value which still needs to be filled (partial application)
2. Application - callfFun() - which, in a lambda, allows you to apply a function parameter

3. Lambda Extraction - _lambda_() - which allows Lambdas to be used with existing Spark HigherOrderFunctions (like aggregate)
Unfortunately the last piece of that puzzle of returning a higher order function isn't currently possible.
Putting together 1 and 3 (straight out of the test suite):

val plus = LambdaFunction("plus", "(a, b) -> a + b", Id(1,2))

val plus3 = LambdaFunction("plus3", "(a, b, c) ->a + b + c", Id(2,2))

val hof = LambdaFunction("hof", "func -> aggregate(array(i1, 2, 3), 0, _lambda_(func))", Id(3,2))
registerLambdaFunctions(Seq(plus, plus3, hof))

import sparkSession.implicits._

// attempt to dropping a reference to a function where simple lambdas are expected.

// control

assert(6 == sparkSession.sql("SELECT aggregate(array(1, 2, 3), 0, (acc, x) -> acc + x) as res").as[Int].head)

// all params would be needed with multiple aritys

assert(6 == sparkSession.sql("SELECT aggregate(array(1, 2, 3), 0, _lambda_(plus(_('int'), _('int')))) as res").as[Int].head)

// can we play with partials?

assert(21 == sparkSession.sql("SELECT aggregate(array(1, 2, 3), 0, _lambda_(plus3(_('int"'), _('int'), 5))) as res").as[Int].head)
// hof'd

assert(6 == sparkSession.sql("SELECT hof(plus(_('int'), _('int'))) as res").as[Int].head)

In the above example you can see type's being specified to the placeholder function, this is needed because, similar to aggExpr,
Spark can't know the types until after they are evaluated and resolved. This does have the benefit of keeping the types at the
partial application site. The default placeholder type is Long / Bigint.

The lambda function extracts a fully resolved underlying Spark LambdaFunction, which means the types must be correct as it is
provided to the function (use the placeholder function to specify types). Similarly, you use the lambda function to extract the
Spark LambdaFunction from a user provided parameter (as seen in the hof example).

The aggregate function only accepts two parameters for its accumulator, but in the plus3 example we've 'injected' in a third.
Partially applying the plus3 with the value 5 in it's "c" position leaves the two arguments as new function. Quality ensures the
necessary transformations are done before it hits the aggregate expression.

Great, but can I use it with aggExpr? Yep:

select aggExpr('DECIMAL(38,18)', dec IS NOT NULL, myinc(_()), myretsum(_(), _())) as agg
allows you to define the myinc and myretsum elsewhere, you don't need to use the lambda function with aggExpr.
What about application? Using callFun:

val use = LambdaFunction("use", "(func, b) -> callFun(func, b)", Id(4,2))

the first parameter must be the lambda variable referring to your function followed by the necessary parameters to pass in. Func
in this case has a single parameter but of course it could have started with 5 and had 4 partially applied. Again you don't need to
use lambda to pass the functions further down the line:

val deep = LambdaFunction("deep", "(func, a, b) -> use(func, a, b)", Id(2,2))

Deep takes the function and simply passes it to use where the callFun exists.

-50/88 - Copyright @ 2022 - UBS AG

https://spark.apache.org/docs/latest/api/sql/index.html#aggregate

5.4.3 Controlling compilation - Tweaking the Quality Optimisations

Finally, you can also further partially apply your lambda variables:

val plus2 = LambdaFunction("plus", "(a, b) -> a + b", Id(3,2))

val plus3 = LambdaFunction("plus", "(a, b, c) -> plus(plus(a, b), c)", Id(3,2))

val papplyt = LambdaFunction("papplyt", "(func, a, b, c) -> callFun(callFun(func, _(), _(), c), a, b)", Id(2,2))
registerLambdaFunctions(Seq(plus2, plus3, papplyt))

import sparkSession.implicits._

assert (6L == sparkSession.sql("select papplyt(plus(_(), _(), _()), 1L, 2L, 3L) as res").as[Long].head)
Here the callFun directly applies the function afterwards but you could equally pass it to other functions.

callFun(callFun(func, _(), _(), ¢), a, b)

can then be read as partially apply func (plus with 3 arguments) parameter 3 with the lambda variable c, creating a new two
argument function. Then call that function with the a and b parameters. Useless in this case perhaps but it should be illustrative.

All that's missing is returning lambdas:

val plus2 = LambdaFunction("plus", "(a, b) -> a + b", Id(3,2))
val plus3 = LambdaFunction("plus", "(a, b, c) -> plus(plus(a, b), c)", Id(3,2))
val retLambda = LambdaFunction("retLambda", "(a, b) -> plus(a, b, _())", Id(2,2))

registerLambdaFunctions(Seq(plus2, plus3, retLambda))
import sparkSession.implicits._
assert(6L == { val sql = sparkSession.sql("select callFun(retLambda(1L, 2L), 3L) as res")

sql.as[Long].head})

here the user function retLambda returns the plus with 3 arity applied over a and b, leaving a function of one arity to fill. The top
level callFun then applies the last argument (c).

fs sql only

As you can create your own functions based on Column transformations the functionality is not extended to the dsl where there are
better host language based solutions.

Ais experimental

Although behaviour has been tested with compilation and across the support DBRs it's entirely possible there are gaps in the trickery
used.

A good example of the experimental nature is the () function, it's quite possible that is taken by Spark at a later stage.

Aubda drop in call arguments to transform_values and transform_keys don't work on 3.0 and 3.1.2/3

They pattern match on List and not seq, later versions fix this. To work around this you must explicitly use lambdas for these
functions.

& not mix higher order functions with subqueries

Per SPARK-47509 subqueries within a HOF can lead to correctness issues, such usage is not supported

5.4.3 Controlling compilation - Tweaking the Quality Optimisations

Normal Spark LambdaFunctions, NamedLambdaVariable and HigherOrderFunctions aren't compiled, this is - in part - due to the
nature of having to thread the lambda variables across the Expression tree and calling bind.

At the time of codegen bind has already been called however so the code is free to create a new tree just for compilation. Quality
makes use of this and replaces all NamedLambdaVariables expressions with a simple variable in the generated code.

-51/88 - Copyright @ 2022 - UBS AG

https://issues.apache.org/jira/browse/SPARK-47509

5.4.3 Controlling compilation - Tweaking the Quality Optimisations

NamedLambdaVariables also use AtomicReferences, which was introduced to avoid a tree manipulation task - see here for the
code introduction. AtomicReferences are slower for both writes and reads of non-contended variables. As such Quality does away
with this in its compilation, the exprld is sufficient to track the actual id.

Quality only attempts to replace it's own FunN and reverts to using NamedLambdaVariables if it encounters any other
HigherOrderFunction. Where it can replace it uses NamedLambdaVariableCodeGen with an Exprld specific code snippet.

You can customise this logic via implementing:

trait LambdaCompilationHandler {

Jrx
*
* @param expr
* @return empty if the expression should be transformed (i.e. there is a custom solution for it). Otherwise return the full set of NamedLambdavariables

found

*/

def shouldTransform(expr: Expression): Seq[NamedLambdavariable]

Jrx
* Transform the expression using the scope of replaceable named lambda variable expression
@param expr
@param scope
* @return
*/
def transform(expr: Expression, scope: Map[ExprId, NamedLambdavVariableCodeGen]): Expression

}

*

*

and supplying it via the environment variable, System.property or via sparkSession.sparkContext.setLocalProperty
quality.lambdaHandlers using this format:

name=className

where name is either a fully qualified class name of a HigherOrderFunction or of a lambda (FunN) function.

The default org.apache.spark.sql.qualityFunctions.DoCodegenFallbackHandler allows you to disable any optimisation for a
HigherOrderFunction. It can be used to disable all FunN optimisations with:

-Dquality.lambdaHandlers=org.apache.spark.sql.qualityFunctions.FunN=org.apache.spark.sql.qualityFunctions.DoCodegenFallbackHandler

Alternatively if you have a hotspot with any inbuilt HoF such as array transform, filter or transform values you could replace the
implementation for compilation with your own transformation. e.g.:

-Dquality. lambdaHandlers=org.apache.spark.sql.catalyst.expressions.Transformvalues=org.mine.SuperfastTransformvalues

ﬁandlers disable FunNRewrite

The FunNRewrite optimisation lifts lambdas out to higher level expressions, enabling sub expression elimination. This behaviour can
be disabled by using /* USED AS LAMBDA */ as a comment within your user function definition, the same occurs when a Spark
Higher Order Function, such as transform/ArrayTransform, is used with a handler. This allows the handlers to be run, compiling out
the HOF, as a trade-off to possible gains from sub expression elimination. Future versions of Spark may compile out the
HigherOrderFunctions removing this limitation.

Why do all this?

Speed, it's up to 40% faster. LambdaRowPerfTest, in the test suite, generates an increasing number of lambdas and only runs
over 10k rows but still sees clear benefits e.g. (orange is compiled lambdas):

-52/88 - Copyright @ 2022 - UBS AG

https://github.com/apache/spark/pull/21954

5.4.3 Controlling compilation - Tweaking the Quality Optimisations

ms

1,600
1,400
1,200
1,000
800
q
600
400+

2004

ruleCount
0 T 1 1 T 1 T T 1 1 T I 1 1

2 4 6 8 10 12 14 16 18 20 22 24 26

This difference is already noticeable with a small increment function in a folder:

thecurrent -> updateField(thecurrent, 'thecount', thecurrent.thecount + 1)

The difference is typically higher with nested lambdas. Should your compilation time exceed the execution time you may wish to
disable compilation via the fallback handler.

Last update: October 24, 2025 15:00:20
Created: October 24, 2025 15:00:20

-53/88 - Copyright @ 2022 - UBS AG

5.5 PRNG Functions

5.5 PRNG Functions

The existing Spark rand function has a few of limitations:

* It generates doubles
* Has a fixed implementation

* Only provides reseeding on each new parition ignoring splittable / jumpable algorithms

The Quality psuedorandom generators produce either 128bit values (two longs) or a configurable number of bytes and, as a
result, do not suffer precision issues, they also leverage RandomSource implementations allowing users to choose the algorithm
used.

In addition, by leveraging .isJumpable and the resulting jump function the Quality prng function can benefit from the
implementations own approach to managing overalapping intervals across the cluster.

5.5.1 RNG Expressions

* rng bytes([number of bytes to fill - defaults to 16], [RandomSource RNG Impl - defaults to 'XO RO SHI RO 128 PP'], [seed -
defaults to 0]) - Uses commons rng to create byte arrays, implementations can be plugged in, when seed is 0 the RNG's
default seed generator is used. Note when a given RNG isJjumpable then it will use jumping for each partition where possible
both improving speed and statistical results.

* rng([RandomSource RNG Impl - defaults to 'XO RO SHI RO 128 PP'], [seed - defaults to 0]) - Uses commons rng to create
byte arrays, implementations can be plugged in, when seed is 0 the RNG's default seed generator is used. Note when a given
RNG isJumpable then it will use jumping for each partition where possible both improving speed and statistical results.

* rng uuid(expr) - processes expr with either byte arrays or two longs into a UUID string, it's counterpart long pair from uuid
generates two longs

Last update: October 24, 2025 15:00:20
Created: October 24, 2025 15:00:20

- 54/88 - Copyright @ 2022 - UBS AG

https://commons.apache.org/proper/commons-rng/commons-rng-simple/apidocs/org/apache/commons/rng/simple/RandomSource.html
https://commons.apache.org/proper/commons-rng/commons-rng-client-api/apidocs/org/apache/commons/rng/JumpableUniformRandomProvider.html
https://sparkutils.github.io/quality/0.1.3.1/sqlfunctions/#long_pair_from_uuid

5.6 Row ID Functions

5.6 Row ID Functions
Row ID functions are at least 160bit, made of a lower base id and two longs. There are 4 distinct implementations:

1. Random Number, a 128bit payload based on XO RO_SHI RO_128 PP

2. Field Based, 128bit MD5 payload based on fields e.g. for DataVault style approaches

3. Provided, an Opaque ID payload, typically 128bit, provided by some upstream system fields (MD?5 is not used under the hood)

4. Guaranteed Unique, 160bit ID based on Twitters snowflake IDs at Spark scale - requires MAC addresses to be stable and unique on

a driver

These IDs use the "base" field to provide extensibility but comparisons must include all three fields (or more longs should they be
added).

From a performance perspective you should transform the column to make the structure into top-level fields via

selectExpr("*", "myIDField.*").drop("myIDField")

e rng id('prefix') - generates a Random 128bit number with each column name prefixed for easy extraction
e unique id('prefix') - generates a unique 160bit ID with each column name prefixed for easy extraction

« field based id('prefix', 'messagedigest’, expl, exp2, *) - generates a digest based e.g. 'MD5' identifier based on an expression
list
 provided id('prefix', longArrayBasedExpression) - generates a providedID based on supplied array of two longs expression

e murmur3 id(‘'prefix', expl, exp2, *) - generates and ID using hashes based on a version of murmur3 - not cryptographically
secure but fast

* id_equal('left prefix', 'right prefix') - (SQL only) tests the two top level field IDs by adding the prefixes, note this does allow
predicate push-down / pruning etc. (NB further versions may be added when 160bit is exceeded)

Pﬁ's can be 96-bit or larger multiples of 64

The algorithm you chose to use for generating Ids will change the length of underlying longs, idEqual cannot be used on different
lengths but you can easily replace this with a lambda of the correct length.

>
'ﬂlere are many different hash impls

The fieldBasedID functions have a family of alternatives for MessageDigest, ZA based hashes and Guava based Hashers. See SQL
Functions and look for the Hash and ID tags.

fieldBasedID with MD5 - Seems far slower than other approaches

It's definitely slower than either uniqueld or rngID. If your use case allows it, consider murmur3ID if this is sufficient, it's slightly
faster as is the XXH3 za hash. MD5 was chosen based on the ubiquity of implementations including on backends (e.g. allowing
datavault style approaches).

Guaranteed Unique ID - How?

In order to lock down a globally (within a Spark using routable IP address space) ID you need to make sure a given machine,
point in time and partition (thread) is unique.

- 55/88 - Copyright @ 2022 - UBS AG

5.6 Row ID Functions

Your networking / vendor setup should guarantee the machines MAC Address is unique for your Spark Driver, Spark guarantees
that the partition id, although re-usable, does not get re-used within a Spark cluster and for a given ms since an epoch we can
lock down a range of row numbers. This leaves the following storage model:

gantt
dateFormat YYYY-MM-DD
axisFormat %j
title Bit Layout
todayMarker off

section First Int
Unique ID Type and Reserved Space :active, start, 2021-01-01, 8d
First 3 Bytes of MAC : startmac, after start, 24d

section First Long

Last 3 Bytes of MAC :endmac, after startmac, 24d
Spark Partition rpartition, after endmac, 32d
First 8 bits of Timestamp :starttimestamp, after partition, 8d

section Second Long
Rest of Timestamp :done, endtimestamp, after starttimestamp, 33d
Row number in Partition :rowid, after endtimestamp, 31d

When Spark starts a new partition the uniquelD expression resets the timestamp and partition and each row evaluates the rowid.
When 32bits of rowid would be hit the timestamp is reset and the count resets to 0 allowing over a billion rows per ms.

This approach is faster than rngID but also means rows written to the same partitions have statistically incrementing id's
allowing Parquet statistical ranges to be used for all three values in predicate pushdowns.

Last update: October 24, 2025 15:00:20
Created: October 24, 2025 15:00:20

- 56/88 - Copyright @ 2022 - UBS AG

5.7 QualityRules

5.7 QualityRules

5.7.1 Engine

Quality provides a basic rule engine for data quality rules the output of each rule however is always translated to RuleResult,
encoded and persisted for audit reasons.

The ruleEngineRunner function however allows you to take an action based on the passing of a rule and, via salience, choose the
most appropriate output for a given row.

You can understand QualityRules as a large scale auditable SQL case statement with "when" being the trigger rule and the
"then" as the output expression.

RuleSuites are built per the normal DQ rules however a RuleResultProcessor is supplied:

val ruleResultProcessor =
RunOnPassProcessor(salience, Id(outputId, outputVersion), RuleLogicUtils)("array(account_row('from', account), account_row('to', 'other_account1'))")))
val rule = Rule(Id(id, version), expressionRule, ruleResultProcessor)
val ruleSuite = RuleSuite(Id(ruleSuiteId, ruleSuiteVersion), Seq(
RuleSet(Id(ruleSetId, ruleSetVersion), Seq(rule)
)))

val rer = ruleEngineRunner(ruleSuite,
DataType.fromDDL("ARRAY<STRUCT< transfer_type : STRING, “account : STRING>>"))

=

val testDataDF = ...

val outdf = testDataDF.withColumn("together", rer).selectExpr("*", "together.result")

The ruleEngineRunner takes a DataType parameter that must describe the type of the result column type. An additional
salientRule column is available that packs three the Id's that represent the ruleld chosen by salience. If this is null then no rule
was triggered and the output column will also be null (verifiable via debug mode), if however there is an entry but the output is
null then this signifies that the output expression produced a null.

The salientRule column may be pulled apart down to the id number and versions via the unpack expression or unpacklIdTriple to
unpack the lot in one go. If you are using frameless encoders these longs can be converted to a triple of Id's.

The salience parameter to the RunOnPassProcessor is used to ensure the lowest value is returned for a ruleSuite. It is the
responsibility of the rule configuration to ensure there can only be one output.

All of the existing functionality, lambadas etc. can be used to customise the results and, as per the normal DQ processing, is run
in-process across the clusters when the spark action is taken (like writing the dataframe to disk).

Serializing

The serializing approach uses the same functions as normal DQ RuleSuites, the only difference is you should use toDS and
provide the two additional ruleEngine parameters when reading from a DF:

val withoutLambdasAndOutputExpressions = readRulesFromDF(rulesDF
col("ruleSuiteId"),
col("ruleSuiteVersion"),
col("ruleSetId"),
col("ruleSetVersion"),
col("ruleIid"),
col("ruleversion"),
col("ruleExpr"),
col("ruleEngineSalience"),
col("ruleEngineId"),
col("ruleEngineVersion")

)
val lambdas = ...

val outputExpressions = readOutputExpressionsFromDF(so.toDF(),
col("ruleExpr"),
col("functionId"),
col("functionversion"),
col("ruleSuiteId"),
col("ruleSuiteVersion")

-57/88 - Copyright @ 2022 - UBS AG

5.7.1 Engine

val (ruleMap, missing) = integrateOutputExpressions(withoutLambdasAndOutputExpressions, outputExpressions)

The ruleExpr is only run for the lowest ruleEngineSalience result of any passing ruleExpr. The missing result will contain any
output expressions specified by a rule which do not exist in the output expression dataframe based by rulesuite id, if your
rulesuite id is not present in the missing entries your RuleSuite is good to go.

The rest of the serialization functions to combine lambdas etc. work as per normal DQ rules allowing you to use lambda functions
in your QualityRules output rules as well.

The result of toDS will contain the three ruleEngine fields, you can simply drop them if they are not needed.

Debugging

The RuleResult's indicate if a rule has not triggered but in the case of multiple matching rules it can be useful to see which rules
would have been chosen.

To enable this you can add the debugMode parameter to the ruleEngineRunner:

val rer = ruleEngineRunner(ruleSuite,
DataType.fromDDL ("ARRAY<STRUCT< transfer_type : STRING, ‘account : STRING>>"),
debugMode = true)

This changes the output column 'result' field type to:

ARRAY<STRUCT< salience’: INTEGER, ‘result’: ARRAY<ORIGINGALRESULTTYPE>>

ﬁ'hy do I have a null

There are two cases where you may get a null result:

1. no rules have matched (you can verify this as you'll have no passed() rules).

2. your rule actually returned a null (you can verify this by putting on debug mode, you'll see a salience but no result)

flatten_rule_results

val outdf = testDataDF.withColumn("together", rer).selectExpr("explode(flatten_rule_results(together)) as expl").selectExpr("expl.*")

This sql function behaves the same way as per flatten results, however there are now two structures to 'explode'. debugRules
works as expected here as well.

resolveWith

Use with care - very experimental

The resolveWith functionality has several issues with Spark compatibility which may lead to code failing when it looks like it should
work. Known issues:

1. Using filter then count will stop necessary attributes being produced for resolving, Spark optimises them out as count doesn't need
them, however the rules definitely do need some attributes to be useful.

2. You may not select different attributes, remove any, re-order them, or add extra attributes, this is likely to cause failure in show'ing
or write'ing

3. Spark is free to optimise other actions than just count, ymmv in which ones work.

4. The 0.1.0 implementation of update field (based on the Spark impl) does not work in some circumstances
(testSimpleProductionRules, testSalience will fail) - see #36

- 58/88 - Copyright @ 2022 - UBS AG

https://github.com/sparkutils/quality/issues/36

5.7.1 Engine

resolveWith attempts to improve performance of planning for general spark operations by first using a reduced plan against the
source dataframe. The resulting Expression will have all functions and attributes resolved and is hidden from further processing
by Spark until your rules actually run.

val testDataDF =

val rer = ruleEngineRunner (ruleSuite,
DataType.fromDDL(DDL), debugMode = debugMode, resolveWith = resolveWwith = Some(testDataDF))

val withRules = rer.withColumn("ruleResults", rer)

// ... use the rules

WHY IS THIS NEEDED?

For RuleSuites with 1000s of triggers the effort for Spark to prepare the rules is significant. In tests 1k rule with 50 field
evalutaions is already sufficient to cause a delay of over 1m for each action (show, write, count etc.) and the size of the data
being processed is not relevant.

After building the action QualityRules scale and perform as expected, but that initial costs of 1m per action is significant as it can
only be improved by higher spec drivers.

resolveWith, if it works for given use case, drastically reduces this cost, the above 1k example is a 30s evaluation up front and far
less cost for each further action.

With the rather horrible 1k rule example the clock time of running 1k rows through 1k rules with a simple show, then count and
write for actions was 6m15s on an Azure b4ms, using resolveWith brings this down to 1m30s for the same actions. Still not
blazingly fast of course, but far more tolerable and becomes suitable for smaller batch jobs.

ANY REASON WHY | SHOULDN'T TRY IT?

Not really but for production use cases where your trigger and output rules complexity is low you should prefer to not use it, it's
likely fast enough and this solution is very much experimental.

You definitely shouldn't use it when using relation or table fields in your expressions e.g. table.field this does not work (verify this
by running JoinValidationTest using evalCodeGens instead of evalCodeGensNoResolve). There be dragons. This is known to fail
on all OSS builds and OSS runtimes (up to and including 3.2.0). 10.2.dbr and 9.1.dbr actually do work running the tests in
notebooks with resolveWith and relations (the test itself is not built for this however to ensure cross compilation on the OSS
base).

forceRunnerEval

By default, QualityRules runs with an optimised wholestage codegen wherever possible. This works by breaking out the nested
structure of a RuleSuite into multiple index, salience and id arrays which are fixed for the duration of an action. Whilst this
reduces the overhead of array and temporary structure creation the compilation also unrolls the evaluation of trigger rules
allowing jit optimisations to kick in.

Using large RuleSuites, however, may cause large compilation times which are unsuitable for smaller batches, as such you can
force the interpreted path to be used by setting this parameter to true. Individual trigger and output expressions are still
compiled but the evaluation will not be.

Last update: October 24, 2025 15:00:20
Created: October 24, 2025 15:00:20

-59/88 - Copyright @ 2022 - UBS AG

5.7.2 Workflow

5.7.2 Workflow

Overview and terms

QualityRules is a matching engine which applies match/trigger rules to a Dataframe and, when these rules evaluate to passed
(i.e. they match or trigger) output sql is run.

Only one trigger rule may produce output, so salience is used as a tie-breaker, the lowest salience wins.

Aim to have unique salience for tie-breaking

If you have multiple trigger rules with the same salience that both trigger the "winning" output chosen is non-deterministic, chose
your salience wisely.

An alternative way to think of this is the trigger rules are your if and the output expressions are the when, from a logic
perspective it may be helpful to think of them as output verbs - when this is true do that.

Suggested approach to QualityRules management

» Keep unrelated rules in their own RuleSuites, making things easier to reason about

* Make commonly used lambdas or output expressions global

» Use descriptive verbs for your output expressions

» Keep duplication or complexity in lambdas

* Only use fields that change as parameters to those lambdas

» Always start with test data you want to match against and your expected output

* Run all test cases for your RuleSuite for any change, don't assume because your rule worked that others won't stop working
» Use the validation and documentation functionality to document your lambdas and verify you've not made simple mistakes -

Spark errors aren't always easy to understand

This could be visualised as such:

-60/88 - Copyright @ 2022 - UBS AG

QualityEngine Rule Management

?

Define new test row to match
on

¥

Define expected output rows

¥

[Create new matching rule)

¥

[Create new output expression)

Run Test Suite

ves “Is new test row matched™ no
by the correct rule?

< Does the new rule match ves Does any other rule match the test™ no
any other rows in the test suite? row?
no yes

yes i]
<Is the output expected?)@ [Usmg lower sahence)

e \,

(Reﬁne output expression)

Y

Make matching rule more
specific

¥

no

<Matching test cases pass
yes

5.7.2 Workflow

&n't repeat yourself

If you are typing the same trigger rule, output expression or even lambda text repeatedly - make another lambda and consider

making it global

-61/88 -

Copyright @ 2022 - UBS AG

5.7.2 Workflow

Last update: October 24, 2025 15:00:20
Created: October 24, 2025 15:00:20

-62/88 - Copyright @ 2022 - UBS AG

5.8 QualityFolder

5.8 QualityFolder

The ruleFolderRunner function uses the same data formats and structures as the ruleEngineRunner (with the exception of
RuleFolderResult) however it allows you to "fold" results over many matching rules.

In contrast to ruleEngineRunner, which uses salience to select which output expression to run, ruleFolderRunner uses salience to
order the execution of each matching output expression. To facilitate this OutputExpressions in the ruleFolderRunner must be
lambdas with one parameter.

ruleFolderRunner takes a starter Column, which is evaluated against the row and then is passed as the parameter to the
OutputExpression lambdas, in turn the result of these output lambdas is then fed in to the next matching OutputExpression and
folded over until the last is run, which is returned.

When using debugMode you get the salience and each output returned in the resulting array, as with ruleEngineRunner the
Encoder derivations for RuleFolderResult work with both T and Seq[(Int, T)] where the Int is salience.

RuleSuites are built per the normal DQ rules however a RuleResultProcessor is supplied with Lambda OutputExpressions:

val ruleResultProcessor =
RunOnPassProcessor (salience, Id(outputId, outputVersion),
RuleLogicUtils)("thecurrent -> update_field(thecurrent, 'account', concat(thecurrent.account, '_suffix'))")))
val rule = Rule(Id(id, version), expressionRule, ruleResultProcessor)
val ruleSuite = RuleSuite(Id(ruleSuiteId, ruleSuiteVersion), Seq(
RuleSet(Id(ruleSetId, ruleSetVersion), Seq(rule)
)))

val rer = ruleFolderRunner(ruleSuite,
struct($"transfer_type", $"account"))

val testDataDF = ...

val outdf = testDataDF.withColumn("together", rer).selectExpr("*", "together.result")

You may use multiple path and expression combinations in the same call, allowing the change of multiple fields at once - this will
be faster than nesting calls to updateField.

Don't use 'current’ for a variable on 2.4

It may be tempting to use 'current' as your lambda variable name, but this causes problems on 2.4 - every other version doesn't care.

Doun't use resolveWith on 2.4

2.4 will NPE using withResolve, this does not occur on more recent Spark versions

bon't use select(*, ruleFolderRunner)

Spark will not NPE using withColumn but will using select(expr("*"), ruleFolderRunner(ruleSuite)). In order to thread the types
through the resolving needs an additional projection, if you must avoid withColumn (e.g for performance reasons) then you may
specify the DDL via the useType parameter.

5.8.1 Set

Although the use of lambda expressions allows you full control of your output expression it can be a bit verbose. The common use
case of defaulting is more easily expressed via the following syntax:

set(variable.path = expression to assign, variable2 = other expression, variable3 = expression using currentResult)

Only valid variable names and paths, followed by equal and valid expressions (however complex) are allowed.

-63/88 - Copyright @ 2022 - UBS AG

5.8.2 flatten folder results

The following two folder expressions are equivalent, indeed the set call is translated into the lambda:

set(account = concat(currentResult.account, '_suffix'), ammount = 5)

currentResult -> update_field(currentResult, 'account', concat(currentResult.account, '_suffix'), 'ammount',6 5)

The set syntax defaults the name of the lambda variable to "currentResult" and removes the odd looking quotes around the
variable names.

5.8.2 flatten_folder_results
val outdf = testDataDF.withColumn("together", rer).selectExpr("explode(flatten_folder_results(together)) as expl").selectExpr("expl.result")

This sql function behaves the same way as per flatten rule results with debugRules working as expected.

5.8.3 resolveWith

Use with care - very experimental

The resolveWith functionality has several issues with Spark compatibility which may lead to code failing when it looks like it should
work. Known issues:

1. Using filter then count will stop necessary attributes being produced for resolving, Spark optimises them out as count doesn't need
them, however the rules definitely do need some attributes to be useful.

2. You may not select different attributes, remove any, re-order them, or add extra attributes, this is likely to cause failure in show'ing
or write'ing
3. Spark is free to optimise other actions than just count, ymmv in which ones work.

4. The 0.1.0 implementation of update field (based on the Spark impl) does not work in some circumstances
(testSimpleProductionRules will fail) - see #36

resolveWith attempts to improve performance of planning for general spark operations by first using a reduced plan against the
source dataframe. The resulting Expression will have all functions and attributes resolved and is hidden from further processing
by Spark until your rules actually run.

val testDataDF =

val rer = ruleEngineRunner (sparkSession.sparkContext.broadcast(ruleSuite),
DataType.fromDDL(DDL), debugMode = debugMode, resolveWith = resolvewWith = Some(testDataDF))

val withRules = rer.withColumn("ruleResults", rer)

// ... use the rules

You definitely shouldn't use it when using relation or table fields in your expressions e.g. table.field this does not work (verify this
by running JoinValidationTest using evalCodeGens instead of evalCodeGensNoResolve). There be dragons. This is known to fail
on all OSS builds and OSS runtimes (up to and including 3.2.0). 10.2.dbr and 9.1.dbr actually do work running the tests in

notebooks with resolveWith and relations (the test itself is not built for this however to ensure cross compilation on the OSS
base).

Last update: October 24, 2025 15:00:20
Created: October 24, 2025 15:00:20

- 64/88 - Copyright @ 2022 - UBS AG

https://github.com/sparkutils/quality/issues/36

5.9 QualityExpressions

5.9 QualityExpressions

ExpressionRunner applies a RuleSuite over a dataset returning the results of any expression as yaml (json cannot support non
string map keys), to return a single real type from all the rules use typedExpressionRunner instead. When used with just
aggregate expressions it allows running dataset level checks, run after DQ it also allows statistics on individual rule results.

It is important to note that if you are having multiple runners in the same data pipeline they should each use different
RuleSuites, and you should consider .cache'ing the intermediate results.

RuleSuites are built per the normal DQ rules and executed by adding an expressionRunner column:

val dqRuleSuite = ...
val aggregateRuleSuite =
val testDataDF = ...

import frameless._
import quality.implicits._

// first add dataQuality, then ExpressionRunner
val processed = taddDataQuality(sparkSession.range(1000).toDF, dqRuleSuite).select(expressionRunner(aggregateRuleSuite)).cache

val res = processed.selectExpr("expressionResults.*").as[GeneralExpressionsResult].head()
assert(res == GeneralExpressionsResult(Id(10, 2), Map(Id(20, 1) -> Map(

Id(30, 3) -> GeneralExpressionResult("'499500'\n", "BIGINT")

Id(31, 3) -> GeneralExpressionResult("'500'\n", "BIGINT")
1))

val gres =
processed.selectExpr("rule_result(expressionResults, pack_ints(10,2), pack_ints(20,1), pack_ints(31,3)) rr")
.selectExpr("rr.*").as[GeneralExpressionResult].head

assert(gres == GeneralExpressionResult("'500'\n", "BIGINT"))

To retrieve results in the correct type use from yaml with the correct ddl. As Spark needs an exact type for any expression you
can't simply flatten or explode as with the other Quality runner types, each result can have it's own type. As such it's
recommended that the expressionRunner result row is cached and extraction is performed with one of the following pattern:

import sparkSession.implicits._
val t31_3 = processed.select(from_yaml(rule_result(col("expressionResults"), pack_ints(10,2), pack_ints(20,1), pack_ints(Id(31,3)), 'BIGINT'))).as[Long].head

Or parse the GeneralExpressionResult map directly and:

val t31_3 = sparkSession.sql(s"from_yaml(${res.ruleSetResults(Id(20,1))(Id(30,3)).ruleResult}, 'BIGINT')").as[Long].head

or, finally, and perhaps as a last resort, to use snakeyaml and consume using the resulting java:

import org.yaml.snakeyaml.Yaml

val yaml = new Yaml();

val obj = yaml.load[Int](res.ruleSetResults(Id(20,1))(Id(30,3)).ruleResult).toLong;
println(obj);

However, as can be seen with the direct use of snakeyaml example the types may not always automatically align and, in this case
or Decimal you risk losing precision. Note that the yml spec allows the default implementation as the values have no bit-length
for either integer or floats.

To increase precision / accuracy of the yaml types if you are not using from yaml, you can provide the renderOptions map with
useFullScalarType = 'true'. This changes the output considerably:

val processed = taddDataQuality(sparkSession.range(1000).toDF, rowrs).select(expressionRunner(rs, renderOptions = Map("useFullScalarType" -> "true")))

val gres =
processed.selectExpr("rule_result(expressionResults, pack_ints(10,2), pack_ints(20,1), pack_ints(31,3)) rr")
.selectExpr("rr.*").as[GeneralExpressionResult].head

// NOTE: the extra type information allows snakeyaml to process Long directly without precision loss
assert(gres == GeneralExpressionResult("!!java.lang.Long '500'\n", "BIGINT")

import org.yaml.snakeyaml.Yaml

val yaml = new Yaml();

val obj = yaml.load[Long](res.ruleSetResults(Id(20,1))(Id(30,3)).ruleResult);
println(obj);

- 65/88 - Copyright @ 2022 - UBS AG

https://yaml.org/spec/1.2.2/#10213-integer

5.9.1 strip result ddl

NB: Decimal's will be stored with a java.math.BigDecimal type, rather than scala.math.BigDecimal

Qu can add tags back in if needed

As using useFullScalarType -> true adds yaml type tags on all output scalars it can increase storage costs considerably, as such it's
disabled by default.

It can however be retrieved by simply calling from yaml and to yaml again with it enabled if the end result should be used outside of
Spark.

&n't mix aggregation functions with non-aggregation functions

Spark may complain before running an action, but it's also possible to produce incorrect results.
This is the equivalent of running:

select *, sum(id) from table

which will not work without group by's.

5.9.1 strip_result_ddl

The resultType string is useful in debugging but may not be for storage, if you wish to trim this information from the results use
the strip result ddl function.

This turns the result from GeneralExpressionResult into a simple string:

val stripped = processed.selectExpr("strip_result_ddl(expressionResults) rr'")

val strippedRes = stripped.selectExpr("rr.*").as[GeneralExpressionsResultNoDDL].head()
assert(strippedRes == GeneralExpressionsResultNoDDL(Id(10, 2), Map(Id(20, 1) -> Map(
Id(30, 3) -> "'499500'\n",
1d(31, 3) -> "'500'\n")
)))

val strippedGres = {
import sparkSession.implicits._
stripped.selectExpr("rule_result(rr, pack_ints(10,2), pack_ints(20,1), pack_ints(31,3))")
.as[String].head
}

assert(strippedGres == "'500'\n")

Last update: October 24, 2025 15:00:20
Created: October 24, 2025 15:00:20

- 66/88 - Copyright @ 2022 - UBS AG

5.10 Validation

5.10 Validation

Quality provides some validation utilities that can be used as part of your rule design activity to ensure sure you aren't using
variables or functions that don't exist, or even possibly having recursive lambda calls.

It comes in two distinct flavours:

1. Schema Based - The schema representing your dictionary

2. DataFrame Based - Use an actual DataFrame to provide your dictionary
with the option of running the rules against your schema (or DataFrame) via the runnerFunction parameter.
A simpler function for just assessing known Errors against a schema are also provided:

def validate(schema: StructType, ruleSuite: RuleSuite): Set[RuleError]

The validation result model is as follows:

(@ovpusisevers

so the simple version returns any known Errors backed by case classes so you can pattern match as needed or just display as is
via the id and errorText functions.

Resolution of function names are run against the functionRegistry, as such you must register any UDF's or database functions
before calling validate.

5.10.1 What if | want to actually test the ruleSuite runs?

def validate(schemaOrFrame: Either[StructType, DataFrame], ruleSuite: RuleSuite, showParams: ShowParams = ShowParams(), runnerFunction: Option[DataFrame =>
Column] = None, qualityName: String = "Quality", recursivelLambdasSOEIsOk: Boolean = false, transformBeforeShow: DataFrame => DataFrame = identity):
(Set[RuleError], Set[RuleWarning], String, RuleSuiteDocs, Map[Id, ExpressionLookup])

Given you can either use a ruleRunner or a ruleEngineRunner and set a number of parameters on those Column functions the
validate runnerFunction is as simple DataFrame => Column that allows you to tweak the output. In the case of
ruleEngineRunner you could use debug mode, try with different DDL output types etc. Use the qualityName parameter if you
want to store the output in another column. If you don't provide the runnerFunction the resulting string will be empty.

You don't actually have to provide a DataFrame, instead using just schema will generate an empty dataset to allow Spark to
resolve against. Using a DataFrame parameter will allow you to capture the output in the resulting tuples 3 String.

There are a number of overloaded validate arity functions to help solve common cases, they all delegate to the above function,
whic also returns the documentation objects for each expression in the RuleSuite via the RuleSuiteDocs object, this provides a
base for the documentation of a RuleSuite.

5.10.2 What | want to change the dataframe before | show it?

Using the transformBeforeShow parameter you can enhance, select or filter the DataFrame before showing it.

-67/88 - Copyright @ 2022 - UBS AG

5.10.3 Why do I get a java.lang.AbstractMethodError when validating?

5.10.3 Why do | get a java.lang.AbstractMethodError when validating?

The validation code also validates the sql documentation, checking documented parameters against lambda parameter names (or
indeed that you have any parameters when not a lambda).

You probably have a dependency on the Scala Compiler, due to the scala compiler requiring a different parser combinator library
this may occur due to classpath issues.

To remediate please make sure that Quality is higher up on your dependencies than the scala compiler is. If need be manually
specify the parser combinator library dependency, making sure to use the same version declared in Qualities pom.

Last update: October 24, 2025 15:00:20
Created: October 24, 2025 15:00:20

- 68/88 - Copyright @ 2022 - UBS AG

https://github.com/scala/scala-parser-combinators/issues/197#issuecomment-480486554

5.11 Expression Documentation

5.11 Expression Documentation

As Quality is based on sql it can be useful to document it in place, particularly with Lambda and Output expressions, but also
applies to rules and trigger rules.

The basic format follows javadocs / scaladocs approach, without *'s on each line, but is possible to define on one line:

/** My Description @param name name desc @param othername othername desc @return return val*/

This could also be written with newlines including markdown (if the renderer supports it):
e
My Description:

* bullet point
* more points

@param name name desc
@param othername othername:

* more description points
@return return val

*/

Param's are optional and will generate a warning if the names don't match in the validate function or if params are used on a
non-lambda expression.

The return value is also optional but would apply to all expressions.

Whilst an incorrect parameter name will be flagged and warned against you won't be forced to put a comment for every
parameter.

A couple of helpful utility functions:

val (errors, warnings, out, docs, expr) = validate(Left(struct), ruleSuite)
import com.sparkutils.quality.utils.{RuleSuiteDocs, RelativeWarningsAndErrors}

val relative = RelativeWarningsAndErrors("../sampleDocsValidation/", errors, warnings)
val md = RuleSuiteDocs.createMarkdown(docs, ruleSuite, expr, qualityURLGOESHERE+"/sqlfunctions/", Some(relative))

IOUtils.write(md, new FileOutputStream("./docs/advanced/sampleDocsOutput.md"))

val emd = RuleSuiteDocs.createErrorAndwWarningMarkdown(docs, ruleSuite, relative.copy(relativePath = "../sampleDocsOutput/"))
IoUtils.write(emd, new FileOutputStream("./docs/advanced/sampleDocsValidation.md"))

exist to generate docs of a ruleSuite and validation errors. The validate function returns both of these inputs. You must specify the
quality url containing the sglfunction documentation in order to link, hrefs are not carried across mike links yet.

The sample docs and sample errors/warnings are generated from the DocMarkdownTest.

Last update: October 24, 2025 15:00:20
Created: October 24, 2025 15:00:20

-69/88 - Copyright @ 2022 - UBS AG

5.12 View Loading

5.12 View Loading

As of Spark 3.4 sub queries become a great way to provide lookups and transformation logic in rules. In order to support an
easier use of views the following functions have been added in 0.1.0:

val (viewConfigs, failed) = loadvViewConfigs(loader, config.toDF(), expr("id.id"), expr("id.version"), Id(1,1),
col("name"),col("token"),col("filter"),col("sql")

)

val results = loadViews(viewConfigs)

loadViewConfigs takes a DataFrameLoader as a parameter allowing Quality to load tables based on your integration logic. There
are two flavours, one expecting a table with the following schema:

STRUCT< name : STRING, token : STRING nullable, filter : STRING nullable, sql: STRING nullable>

and the other tied to a RuleSuite:

STRUCT< ruleSuiteId: INT, ruleSuiteVersion: INT, name : STRING, token : STRING nullable, filter : STRING nullable, sql: STRING nullable>

both versions return any rows for which token and sql are both null in the failed result and the resulting configuration in
viewConfigs.

Where token is present the loader will be called for it and the filter column applied (allowing re-use).

After loading the ViewConfig's the loadViews function can be called, registering all the views via createOrReplaceTempView and
returning a set of replaced views, failedToLoadDueToCycles and notLoadedViews, a set of unloaded views. In the event that
views refer to other views not present in ViewConfig a MissingViewAnalysisException will be thrown,
ViewLoaderAnalysisException for other analysis exceptions, as will parsing exceptions as per normal Spark.

loadViews will attempt to automatically attempt to resolve ViewConfigs that depend on other ViewConfigs, where there is a cycle
that is 2x the number of ViewConfigs the call will return with failedToLoadDueToCycles as true.

These calls must be made before running any dq, engine or folder using views.

>
ﬁew names must be quoted if using special characters

A good rule of thumb is minus', dot's etc. that you wouldn't be able to use as a table name in any other sql dialect must be “quoted”
in backticks. On Spark versions less than 3.2 any missing views will not contain back ticks, this can lead to situations on earlier
Spark versions where views are not loaded and will result in the MissingViewAnalysisException.missingRelationNames also not
having backticks returned. Quality will attempt to work around this limitation when resolving dependencies.

Last update: October 24, 2025 15:00:20
Created: October 24, 2025 15:00:20

-70/88 - Copyright @ 2022 - UBS AG

5.13 Processors - Row By Row

5.13 Processors - Row By Row

Quality Processors allow for Quality rules to be used on a jvm outside of Spark execution. Spark is required for expression
resolution and compilation so the pattern of usage is:

import com.sparkutils.quality.sparkless.ProcessFunctions._
case class InputData(fields)

val sparkSession = SparkSession.builder().
config("spark.master", s"local[1]").
config("spark.ui.enabled", false).getOrCreate()

registerQualityFunctions() // optional

try {
val ruleSuite = // get rulesuite
import sparkSession.implicits._
// thread safe to share
val processorFactory = dqFactory[InputData](ruleSuite)

// in other threads an instance is needed
val threadSpecificProcessor = processorFactory.instance
try {
val dgResults: RuleSuiteResult = threadSpecificProcessor(new InputData(...))
} finally {
// when your thread is finished doing work close the instance
threadSpecificProcessor.close()

}

-

finally {
sparkSession.stop()

Stateful expressions ruin the fun

Given the comment about "no Spark execution" why is a sparkSession present? The Spark infrastructure is used to compile code,
this requires a running spark task or session to obtain configuration and access to the implicits for encoder derivation. IF the
rules do not include stateful expressions (why would they?) and you use the default compilation, without Spark's higher order
functions, this is also possible:

import com.sparkutils.quality.sparkless.ProcessFunctions._
case class InputData(fields)

val sparkSession = SparkSession.builder().
config("spark.master", s"local[1]").
config("spark.ui.enabled", false).getOrCreate()

val ruleSuite = // get rulesuite

import sparkSession.implicits._

// thread safe to share

val processorFactory = dqFactory[InputData](ruleSuite)

sparkSession.stop()

// in other threads an instance is needed

val threadSpecificProcessor = processorFactory.instance

try {

threadSpecificProcessor.initialize(partitionId) // Optional, see below Partitions note
val dgResults: RuleSuiteResult = threadSpecificProcessor(new InputData(...))

finally {

// when your thread is finished doing work close the instance
threadSpecificProcessor.close()

-

The above bold IF is ominous, why the caveat? Stateful expressions using compilation are fine, the state handling is moved to the
compiled code. If, however, the expressions are "CodegenFallback" and run in interpreted mode then each thread needs its own
state. The same is true for using compile = false as a parameter, as such it's recommended to stick with defaults and avoid
stateful expressions such as monotonically incrementing id, rand or unique id.

Similarly, Spark's Higher Order Functions such as transform always require re-compilation. Later Spark versions or a custom
compilation handlers can remedy this. Using Quality managed user functions is fine as long as they too don't use Spark's Higher
Order Functions.

If the rules are free of such stateful expressions then the .instance function is nothing more than a call to a constructor on pre-
compiled code.

-71/88 - Copyright @ 2022 - UBS AG

https://spark.apache.org/docs/latest/api/sql/index.html#transform
https://issues.apache.org/jira/browse/SPARK-37019
https://sparkutils.github.io/quality/0.1.3.1-RC12/advanced/userFunctions/#controlling-compilation-tweaking-the-quality-optimisations
https://sparkutils.github.io/quality/0.1.3.1-RC12/advanced/userFunctions/#controlling-compilation-tweaking-the-quality-optimisations

5.13.1 Encoders and Input types

In short, given stateful expressions can provide different answers for the same inputs it's something to be avoided unless you
really need that behaviour.

Thread Safety
In all combinations of ProcessorFactory's the factory itself is thread safe and may be shared, the instances themselves are not
and use mutable state to achieve performance.

Partitions / initialize?

Despite all the above commentary on Stateful expressions being awkward to use, if you choose to then you should use the
initialize function with a unique integer parameter for each thread.

If you are not using stateful expressions you don't need to call initialize.

5.13.1 Encoders and Input types

The output types of all the runners are well-defined but, like the input types, rely on Spark Encoder's to abstract from the actual
types.

For simple beans it's enough to use the Spark Encoders.bean(Class[]) to derive an encoder or, when using Scala, Frameless
encoding derivation.

\J
Jﬁva Lists and Maps need special care

Using Java lists or maps with Encoders.bean doesn't work very often, the type information isn't available to the Spark code.

In Spark 3.4 and above you can use AgnosticEncoders instead and specify the types.

Using user Row's with RowEncoders also works, giving you a completely generic ability to push rows through to the processors.
What about something more interesting like an Avro message?

val testOnAvro = SchemaBuilder.record("testOnAvro")
.namespace("com.teston")
.fields()
.requiredString("product")
.requiredString("account")
.requiredInt("subcode")
.endRecord()
val datumWriter = new GenericDatumWriter[GenericRecord](testOnAvro);

val bos = new ByteArrayOutputStream()
val enc = EncoderFactory.get().binaryEncoder(bos, null)

val avroTestData = testData.map{d =>
val r = new GenericData.Record(testOnAvro)
r.put("product", d.product)
r.put("account", d.account)
r.put("subcode", d.subcode)
datumwWriter.write(r, enc)
enc.flush()
val ba = bos.toByteArray
bos.reset()
ba

}

import s.implicits._
val processorFactory = ProcessFunctions.dqFactory[Array[Byte]](rs, inCodegen, extraProjection =

_.withColumn("vals", org.apache.spark.sql.avro.functions.from_avro(col("value"), testOnAvro.toString)).
select("vals.*"))

extraProjection allows conversion based on existing Spark conversion functions.

-72/88 - Copyright @ 2022 - UBS AG

5.13.2 Map Functions

5.13.2 Map Functions

As correlated subqueries cannot be run outside of Spark the Quality Map functions must be used:

registerQualityFunctions()

val theMap = Seq((40, true),
(50, false),
(60, true)
)
val lookups = mapLookupsFromDFs (Map(
"subcodes" -> (() => {
val df = theMap.toDF("subcode", "isvalid")
(df, column("subcode"), column("isvalid"))

)
), LocalBroadcast(_))

registerMapLookupsAndFunction(lookups)

val rs = RuleSuite(Id(1,1), Seq(
RuleSet(Id(50, 1), Seq(
Rule(Id(100, 1), ExpressionRule("if(product like '%otc%', account = '4201', mapLookup('subcodes', subcode))"))
))
))

Note the use of LocalBroadcast, this implementation of Sparks Broadcast can be used without a SparkSession and just wraps the
value.

5.13.3 Performance

All the information presented below is captured here in the Processor benchmark.

The run is informative but has some outlier behaviours and should be taken as a guideline only (be warned it takes almost a day
to run).

This test evaluates compilation startup time only in the XStartup tests and the time for both startup and running through 100k
rows at each fieldCount in a single thread (on a i9-9900K CPU @ 3.60GHz). The inputs for each row are an array of longs,
provided by spark's user land Row, with the output a RuleSuiteResult object.

-73/88 - Copyright @ 2022 - UBS AG

https://sparkutils.github.io/quality/benchmarks/0.1.3.1-RC12-processor-throughput-inc-lazy/

5.13.3 Performance

rulesetCount

25

25

25

25

25

50

50

50

50

50

75

75

75

75

75

100

100

100

100

100

125

125

125

125

125

150

150

150

150

150

'pst combinations to actual rules

fieldCount

10

20

30

40

50

10

20

30

40

50

10

20

30

40

50

10

20

30

40

50

10

20

30

40

50

10

20

30

40

50

actual number of rules

30

55

80

105

130

60

110

160

210

260

90

165

240

315

390

120

220

320

420

520

150

275

400

525

650

180

330

480

630

780

As noted above the fastest startup time is with compile = false as no compilation takes place, this holds true until about the 780

rule mark where compilation catches up with the traversal and new expression tree copying cost. Each subsequent instance call

will however pay the same cost again, moreover the actual runtime is by far the worst option:

- 74/88 -

Copyright @ 2022 - UBS AG

45,000

40,000

35,000

30,000 +

25,000 +

20,000

15,000

10,000

5,000

5.13.3 Performance

el

ms

rulesetCount

30 40 50 60 70 80 90 100 110 120 130 140 1 l50

The lower green line represents the default configuration, which compiles a class and only creates new instances in the general

case. The below graph shows the performance trend across multiple rule and field complexities:

10,000:
9,000
8,000 -
7,000+

6,000

eldCount — date
50
2025-05-26 00:12:17 [}
40
2025-05-26 00:12:17 [
30
2025-05-26 00:12:17 [}
20
2025-05-26 00:12:17 [l
10
2025-05-26 00:12:17 [

%)
E

rulesetCount

30 40 5 60 70 8 9 100 110 120 130 140 150

- 75/88 - Copyright @ 2022 - UBS AG

5.13.3 Performance

In the top right case that's 780 rules total (run across 50 fields) with a cost of about 0.103ms per row (10,300 ms / 100,000 rows)
or 0.000132ms/rule/row of simple mod checks.

The performance of the default configuration, leveraging Spark's MutableProjections, is consistently the second best accept for
far smaller numbers of rules and field combinations, observable by selecting the 10 fieldCount, every other combination has the
default CompiledProjections (GenerateDecoderOpEncoderProjection) in second place by a good enough margin. The first place
belongs to the experimental VarCompilation, see the info box below for more details.

Qperimental - VarCompilation

The default of forcevarcompilation = false uses a light compilation wrapping around Sparks MutableProjection approach, with the
Spark team doing the heavy lifting.

In contrast the forcevarcompilation = true option triggers the experimental VarCompilation, mimicing WholeStageCodegen (albeit
without severe input size restricitons).

It's additional speed is driven by JIT friendly optimisations and removing all unnecessary work, only encoding from the input data
what is needed by the rules. The experimental label is due to the custom code approach, although it can handle thousands of fields
actively used in thousands of rules there, and is fully tested it is still custom. This may be changed to the default option in the future.

The majority of cost is the serialisation of the results into the RuleSuiteResult's Scala Maps (via Sparks
ArrayBasedMapData.toScalaMap).

If you remove the cost of serialisation, by lazily serializing, things look even faster:

-76/88 - Copyright @ 2022 - UBS AG

5.13.3 Performance

9.000- elc

ms

8,000
7,000 +
6,000
5,000
4,000+
3,000+
2,000€

1,000+

rulesetCount
I I I I I |
30 40 50 60 70 80 90 100 110 120 130 140 150

X-axis
E ulesetCount 3 (3 E) (8 €0 E3 E£)
fieldCount v mmmmm

Single Select All

the top two lines are the default and VarCompilation and the bottom two lines their lazy versions, that's 0.0172453 per row and
0.000022109ms per mod check. The dqLazyDetailsFactory function serialises the overall result directly, but only serialises the
results on demand, you can choose if you wish to process the details based on the overall result.

necalculating Passed RuleSuiteResultDetails can be misleading

Although it's possible to use a pre-calculated RuleSuiteResultDetails against all "Passed" results this would not represent any
disabled, soft failed or probability results. As such it's not provided by default, if you do have a default RuleSuiteResultDetails you
would like to use then you can provide it to the dqLazyDetailsFactory function, using the RuleSuiteResultDetails.ifAllPassed function
and the defaultIfPassed parameter.

Using the defaultIfPassed parameter stops actual results from being returned if a row is passed and will only return the default you
supplied it.

lazyDQDetailsFactory is also useful if you just want to see if the rules passed and aren't interested in the details.
Similarly the lazyRuleEngineFactory and lazyRuleFolderFactory functions are lazy in their RuleSuiteResult serialisation, which
may be appropriate when you are only interested should you not get a result.

-77/88 - Copyright @ 2022 - UBS AG

5.13.3 Performance

ﬁu can force expression trees to be copied

quality.forceCopyInProcessorsOverride can be set to override copying of the expression tree, either to force it or stop it from
happening. Use this if there are custom expressions that do not behave well in the face of compilation and maintain state but don't
use Stateful.

Last update: October 24, 2025 15:00:20
Created: October 24, 2025 15:00:20

-78/88 - Copyright @ 2022 - UBS AG

6. SQL Functions Documentation

6. SQL Functions Documentation

6.1

_([ddl type], [nullable]) provides PlaceHolders for lambda functions to allow partial application, use them in place of actual
values or expressions to either change arity or allow use in lambda .

The default type is Long / Bigint, you will have to provide the types directly when using something else. By default the
placeholders are assumed to be nullable (i.e. true), you can use false to state the field should not be null.

6.2 lambda_

_lambda (user function) extracts the Spark LambdaFunction from a resolved user function, this must have the correct types
expected by the Spark HigherOrderFunction they are parameters for.

This allows using user defined functions and lambdas with in-built Spark HigherOrderFunctions

6.3 agg_Expr

agg Expr([dd]l sum type], filter, sum, result) aggregates on rows which match the filter expression using the sum expression to
aggregate then processes the results using the result expression.

You can run multiple agg Expr's in a single pass select, use the first parameter to thread DDL type information through to the
sum and result functions.

6.4 as_uuid

as uuid(lower long, higher long) converts two longs into a uuid. Note: this is not functionally equivalent to
rng uuid(longPair(lower, higher)) despite having the same types.

6.5 big_Bloom

big Bloom(buildFrom, expectedSize, expectedFPP) creates an aggregated bloom filter using the buildFrom expression.

The blooms are stored on a shared filesystem using a generated uuid, they can scale to high numbers of items whilst keeping the
FPP (e.g. millions at 0.01 would imply 99% probability, you may have to cast to double in Spark 3.2).

buildFrom can be driven by digestToLongs or hashWith functions when using multiple fields.
Alternatives:

big Bloom(buildFrom, expectedSize, expectedFPP, 'bloom loc') - per above but uses a fixed string bloom loc instead of a uuid

6.6 callFun

callFun(user function lambda variable, param1, param?2, ... paramN) used within a lambda function it allows calling a lambda
variable that contains a user function.

Used from the top level sql it performs a similar function expecting either a full user function or a partially applied function,
typically returned from another lambda user function.

-79/88 - Copyright @ 2022 - UBS AG

6.7 coalesce If Attributes Missing

6.7 coalesce_|If Attributes_Missing

coalesce If Attributes Missing(expr, replaceWith) substitutes expr with the replaceWith expression when expr has missing
attributes in the source dataframe. Your code must call the scala processIfAttributeMissing function before using in validate or
ruleEngineRunner/ruleRunner:

val missingAttributesAreReplacedRS = processIfAttributeMissing(rs, struct)
val (errors, _) = validate(struct, missingAttributesAreReplacedRS)

// use it missingAttributesAreReplacedRS in your dataframe. .

6.8 coalesce_If Attributes_Missing_Disable

coalesce If Attributes Missing Disable(expr) substitutes expr with the DisabledRule Integer result (-2) when expr has missing
attributes in the source dataframe. Your code must call the scala processIfAttributeMissing function before using in validate or

ruleEngineRunner/ruleRunner:

val missingAttributesAreReplacedRS = processIfAttributeMissing(rs, struct)
val (errors, _) = validate(struct, missingAttributesAreReplacedRS)

// use it missingAttributesAreReplacedRS in your dataframe..

6.9 comparable_Maps
comparable Maps(struct | array | map) converts any maps in the input param into sorted arrays of a key, value struct.

This allows developers to perform sorts, distincts, group bys and union set operations with Maps, currently not supported by
Spark sql as of 3.4.

The sorting behaviour uses Sparks existing odering logic but allows for extension during the calls to the registerQualityFunctions
via the mapCompare parameter and the defaultMapCompare function.

6.10 digest_To_Longs

digest To Longs('digestImpl’, fields*) creates an array of longs based on creating the given MessageDigest impl. A 128-bit impl
will generate two longs from it's digest

6.11 digest_To_Longs_Struct

digest To Longs Struct('digestImpl’, fields*) creates structure of longs with i0 to iN named fields based on creating the given
MessageDigest impl.

6.12 disabled_Rule

disabledRule() returns the DisabledRule Integer result (-2) for use in filtering and to disable rules (which may not signify a

version bump)

6.13 drop_field

drop field(structure expr, 'field.subfield'*) removes fields from a structure, but will not remove parent nodes.

This is a wrapped version of 3.4.1's dropField implementation.

-80/88 - Copyright @ 2022 - UBS AG

6.14 failed

6.14 failed

failed() returns the Failed Integer result (0) for use in filtering

6.15 field_Based_ID

field Based ID('prefix', 'digestImpl’, fields*) creates a variable bit length id by using a given MessageDigest impl over the fields,
prefix is used with the base, i0 and iN fields in the resulting structure

6.16 flatten_Results

flatten Results(dataQualityExpr) expands data quality results into a flat array

6.17 flatten_Rule_Results

flatten Rule Results(dataQualityExpr) expands data quality results into a structure of flattenedResults, salientRule (the one used
to create the output) and the rule result.

salientRule will be null if there was no matching rule

6.18 from_yaml

from yaml(string, 'ddlType') uses snakeyaml to convert yaml into Spark datatypes

6.19 hash_Field_Based_ID

hash Field Based ID('prefix', 'digestlmpl’, fields*) creates a variable bit length id by using a given Guava Hasher impl over the
fields, prefix is used with the base, i0 and iN fields in the resulting structure

6.20 hash_With

hash With("HASH', fields*) Generates a hash value (array of longs) suitable for using in blooms based on the given Guava hash
implementation.

Note based on testing the digestToLongs function for SHA256 and MD5 are faster.

Valid hashes: MURMUR3 32, MURMURS3 128, MD5, SHA-1, SHA-256, SHA-512, ADLER32, CRC32, SIPHASH24. When an
invalid HASH name is provided MURMURS3 128 will be chosen.

GUpen source Spark 3.1.2/3 issues

On Spark 3.1.2/3 open source this may get resolver errors due to a downgrade on guava version - 15.0 is used on Databricks, open
source 3.0.3 uses 16.0.1, 3.1.2 drops this to 11 and misses crc32, sipHash24 and adler32.

6.21 hash_With_Struct

per hash With(‘"HASH', fields*) but generates a struct with i0 to ix named longs. This structure is not suitable for blooms

-81/88 - Copyright @ 2022 - UBS AG

6.22 id base64

6.22 id_base64

id base64(base, i0, i1, ix) Generates a base64 encoded representation of the id, either the single struct field or the individual
parts

Alternatives:

id_base64(id_struct) Uses an id field to generate

6.23 id_Equal

id _Equal(leftPrefix, rightPrefix) takes two prefixes which will be used to match leftPrefix base = rightPrefix base, i0 and il fields.
It does not currently support more than two i's

6.24 id_from_base64

id from base64(base64) Parses the base64 string with an expected default long size of two i.e. an 160bit ID, any string which is
not of the correct size will return null

Alternatives:

id from base64(base64f, size) Uses a size, which must be literal, to specify the type

6.25id_raw_type

id raw_type(idstruct) Given a prefixed id returns the fields without their prefix

6.26 id_size

id size(base64) Given a base64 from id base64 returns the number of i long fields

6.27 inc

inc() increments the current sum by 1
Alternatives:

inc(x) use an expression of type Long to increment

6.28 long_Pair

long Pair(lower, higher) creates a structure with these lower and higher longs

6.29 long_Pair_Equal

long Pair Equal(leftPrefix, rightPrefix) takes two prefixes which will be used to match leftPrefix lower = rightPrefix lower and
leftPrefix higher = rightPrefix higher

6.30 long_Pair_From_UUID

long Pair From UUID(expr) converts a UUID to a structure with lower and higher longs

- 82/88 - Copyright @ 2022 - UBS AG

6.31 map Contains

6.31 map_Contains

map_ Contains(‘mapid’, expr) returns true if there is an item in the map

6.32 map_Lookup

map Lookup('mapid', expr) returns either the lookup in map specified by mapid or null

6.33 meanF

meanF() simple mean on the results, expecting sum and count type Long

6.34 murmur3_ID

murmur3ID(‘prefix', fields*) Generates a 160bit id using murmer3 hashing over input fields, prefix is used with the base, i0 and
il fields in the resulting structure

6.35 pack_Ints

pack Ints(lower, higher) a packaged long from two ints, used within result compression

6.36 passed

passed() returns the Passed Integer for use in filtering: 10000

6.37 prefixed_To _Long_Pair

prefixed To Long Pair(field, 'prefix') converts a 128bit longpair field with the given prefix into a higher and lower long pair
without prefix.

This is suitable for converting provided id's into uuids for example via a further call to rngUUID.

6.38 print_Code

print Code([msg], expr) prints the code generated by an expression, the value variable and the isNull variable and forwards
eval calls / type etc. to the expression.

The code is printed once per partition on the executors std. output. You will have to check each executor to find the used nodes
output. To use with unit testing on a single host you may overwrite the writer function in registerQualityFunctions, you should
however use a top level object and var to write into (or stream), printCode will not be able to write to std out properly (spark
redirects / captures stdout) or non top level objects (due to classloader / function instance issues). Testing on other hosts without
using stdout should do so to a shared file location or similar.

1! "information" It is not compatible with every expression Aggregate expressions like aggExpr or sum etc. won't generate code
so they aren't compatible with printCode.

lambda is also incompatible with printCode both wrapping a user function and the _lambda_ function. Similarly the _() placeholder function cannot be
wrapped.

Any function expecting a specific signature like aggExpr or other HigherOrderFunctions like aggregate or filter are unlikely to support wrapped arguements.

- 83/88 - Copyright @ 2022 - UBS AG

6.39 print Expr

6.39 print_Expr
print Expr([msg], expr) prints the expression tree via toString with an optional msg

The message is printed to the driver nodes std. output, often shown in notebooks as well. To use with unit testing you may
overwrite the writer function in registerQualityFunctions, you should however use a top level object and var to write into (or
stream).

6.40 probability

probability(expr) will translate probability rule results into a double, e.g. 1000 returns 0.01. This is useful for interpreting and
filtering on probability based results: 0 -> 10000 non-inclusive

6.41 probability _In

probability In(expr, 'bloomid') returns the probability of the expr being in the bloomfilter specified by bloomid.
This function either returns 0.0, where it is definitely not present, or the original FPP where it may be present.

You may use digestToLongs or hashWith as appropriate to use multiple columns safely.

6.42 provided_ID

provided ID('prefix', existingLongs) creates an id for an existing array of longs, prefix is used with the base, i0 and iN fields in
the resulting structure

6.43 results_With

results With(x) process results lambda x (e.g. (sum, count) -> sum) that takes sum from the aggregate, count from the number
of rows counted. Defaults both the sumtype and counttype as LongType

Alternatives:

results With([sum ddl type], x) Use the given ddl type for the sum type e.g. ' MAP<STRING, DOUBLE>'
results With([sum ddl typel, [result ddl type], x) Use the given ddl type for the sum and result types

6.44 return_Sum

return Sum(sum type ddl) just returns the sum and ignores the count param, expands to resultsWith([sum ddl type], (sum,
count) -> sum)

6.45 reverse_Comparable_Maps

reverses a call to comparableMaps

6.46 rng

rng() Generates a 128bit random id using XO RO SHI RO 128 PP, encoded as a lower and higher long pair
Alternatives:

rng(‘algorithm') Uses Commons RNG RandomSource to implement the RNG
rng(‘algorithm', seedL) Uses Commons RNG RandomSource to implement the RNG with a long seed

- 84/88 - Copyright @ 2022 - UBS AG

6.47 rng Bytes

6.47 rng_Bytes

rng Bytes() Generates a 128bit random id using XO RO SHI RO 128 PP, encoded as a byte array

Alternatives:

rng Bytes(‘algorithm') Uses Commons RNG RandomSource to implement the RNG

rng Bytes(‘algorithm', seedL) Uses Commons RNG RandomSource to implement the RNG with a long seed

rng Bytes(‘algorithm', seedL, byteCount) Uses Commons RNG RandomSource to implement the RNG with a long seed, with a
specific byte length integer (e.g. 16 is two longs, 8 is integer)

6.48 rng_ID

rng ID('prefix') Generates a 160bit random id using XO RO SHI RO 128 PP, prefix is used with the base, i0 and il fields in
the resulting structure

Alternatives:

rng Id('prefix’, 'algorithm') Uses Commons RNG RandomSource to implement the RNG, using other algorithm's may generate
more long iN fields

rng Id(‘prefix’, 'algorithm', seedL) Uses Commons RNG RandomSource to implement the RNG with a long seed, using other
algorithm's may generate more long iN fields

6.49 rng_UUID

rng UUID(expr) takes either a structure with lower and higher longs or a 128bit binary type and converts to a string uuid - use
with, for example, the rng() function.

If a simple conversion from two longs (lower, higher) to a uuid is desired then use as uuid, rng uuid applies the same
transformations as the Spark uuid to the input higher and lower longs.

6.50 rule_result

rule result(ruleSuiteResultColumn, packedRuleSuiteld, packedRuleSetld, packedRuleld) uses the packed long id's to retrieve the
integer ruleResult (see below for ExpressionRunner) or null if it can't be found.

You can use pack ints(id, version) to specify each id if you don't already have the packed long version. This is suitable for

retrieving individual rule results, for example to aggregate counts of a specific rule result, without having to resort to using filter
and map values.

rule result works with ruleRunner (DQ) results (including details) and ExpressionRunner results. ExpressionRunner results
return a tuple of ruleResult and resultDDL, both strings, or if strip result ddl is called a string.

6.51 rule_Suite_Result Details

rule Suite Result Details(dq) strips the overallResult from the dataquality results, suitable for keeping overall result as a top-
level field with associated performance improvements

6.52 small_Bloom

small Bloom(buildFrom, expectedSize, expectedFPP) creates a simply bytearray bloom filter using the expected size and fpp -

0.01 is 99%, you may have to cast to double in Spark 3.2. buildFrom can be driven by digestToLongs or hashWith functions when
using multiple fields.

- 85/88 - Copyright @ 2022 - UBS AG

6.53 soft Fail

6.53 soft_Fail

soft Fail(ruleexpr) will treat any rule failure (e.g. failed()) as returning softFailed()

6.54 soft_Failed

soft Failed() returns the SoftFailed Integer result (-1) for use in filtering

6.55 strip_result_ddl

strip_result ddl(expressionsResult) removes the resultDDL field from expressionsRunner results, leaving only the string result
itself for more compact storage

6.56 sum_With

sum_With(x) adds expression x for each row processed in an aggExpr with a default of LongType
Alternatives:

sum_With([ddl typel, x) Use the given ddl type e.g. 'MAP<STRING, DOUBLE>'

6.57 to_yaml
to_yaml(expression, [options map]) uses snakeyaml to convert Spark datatypes into yaml.
Passing null into the function returns a null yaml (newline is appended):

null

All null values will be treated in this fashion. The string "null" will be represented as (again new line is present):

'null’

The optional "options map" parameter currently supports the following output options:

» useFullScalarType, defaults to false. Instead of using the default yaml tags uses the full classnames for scalars, reducing risk
of precision loss if the yaml is to be used outside of the from yaml function.

sample usage:

val df = sparkSession.sql("select array(1,2,3,4,5) og")
.selectExpr("*", "to_yaml(og, map('useFullScalarType', 'true')) y")
.selectExpr("*", "from_yaml(y, 'array<int>') f")
.filter("f == og")

suakeyaml is provided scope

Databricks runtimes provide sparkyaml, so whilst Quality builds against the correct versions for Databricks it can onyl use provided
scope.

snakeyaml is 1.24 on DBRs below 13.1, but not present on OSS, so you may need to add the dependency yourself, tested compatible
versions are 1.24 and 1.33.

- 86/88 - Copyright @ 2022 - UBS AG

6.58 unique ID

6.58 unique_ID

uniquelD('prefix') Generates a 160bit guaranteed unique id (requires MAC address uniqueness) with contiguous higher values
within a partition and overflow with timestamp ms., prefix is used with the base, i0 and il fields in the resulting structure

6.59 unpack

unpack(expr) takes a packed rule long and unpacks it to a .id and .version structure

6.60 unpack_Id_Triple

unpack Id Triple(expr) takes a packed rule triple of longs (ruleSuiteld, ruleSetld and ruleld) and unpacks it to (ruleSuiteld,
ruleSuiteVersion, ruleSetld, ruleSetVersion, ruleld, ruleVersion)

6.61 update_field

update field(structure expr, 'field.subfield', replaceWith, 'fieldN', replaceWithN) processes structures allowing you to replace sub
items (think lens in functional programming) using the structure fields path name.

This is a wrapped version of 3.4.1's withField implementation.

6.62 za_Field_Based_ID

za Field Based ID('prefix', 'digestImpl’, fields*) creates a 64bit id (96bit including header) by using a given Zero Allocation impl
over the fields, prefix is used with the base and i0 fields in the resulting structure.

Prefer using the zal.ongsFieldBasedID for less collisions

6.63 za_Hash_Longs_With

za Hash Longs With('"HASH', fields*) generates a multi length long array but with a zero allocation implementation. This
structure is suitable for blooms, the default XXH3 algorithm is the 128bit version of that used by the internal bigBloom
implementation.

Available HASH functions are MURMUR3 128, XXH3

6.64 za_Hash_Longs_With_Struct

similar to za Hash Longs With('HASH', fields*) but generates an ID relevant multi length long struct, which is not suitable for
blooms

6.65 za_Hash_With

za Hash With('"HASH', fields*) generates a single length long array always with 64 bits but with a zero allocation
implementation. This structure is suitable for blooms, the default XX algorithm is used by the internal bigBloom implementation.

Available HASH functions are MURMURS3 64, CITY 1 1, FARMNA, FARMOU, METRO, WY V3, XX
6.66 za_Hash_With_Struct

similar to za Hash With('"HASH!', fields*) but generates an ID relevant multi length long struct (of one long), which is not suitable
for blooms.

-87/88 - Copyright @ 2022 - UBS AG

https://github.com/OpenHFT/Zero-Allocation-Hashing
https://github.com/OpenHFT/Zero-Allocation-Hashing
https://github.com/OpenHFT/Zero-Allocation-Hashing

6.67 za Longs Field Based ID

Prefer zaHashLongsWithStruct for reduced collisions with either the MURMUR3_128 or XXH3 versions of hashes

6.67 za_Longs_Field Based_ID

za Longs Field Based ID('prefix', 'digestImpl’, fields*) creates a variable length id by using a given Zero Allocation impl over the
fields, prefix is used with the base, i0 and iN fields in the resulting structure. Murmur3 128 is faster than on the Guava
implementation.

Last update: October 24, 2025 15:00:20
Created: October 24, 2025 15:00:20

- 88/88 - Copyright @ 2022 - UBS AG

	Quality
	1. Quality - 0.1.3.1
	1.1 Run complex data quality rules using simple SQL in a batch or streaming Spark application at scale.
	1.2 Enhanced Spark Functionality

	2. Getting Started
	2.1 Building and Setting Up
	2.1.1 Migrating from 0.0.3 to 0.1.0
	2.1.2 Building The Library
	Building via commandline

	2.1.3 Running the tests
	2.1.4 Build tool dependencies
	2.1.5 Sql functions vs column dsl
	Developing for a Databricks Runtime

	2.1.6 Using the SQL functions on Spark Thrift (Hive) servers
	Query Optimisations
	Configuring on Databricks runtimes

	2.1.7 2.4 Support requires 2.4.6 or Janino 3.0.16

	2.2 Defining & Running your first RuleSuite
	2.2.1 withColumn is BAD - how else can I add columns?
	2.2.2 Filtering the Results

	2.3 Those are some Quality flavours
	2.3.1 Quality / QualityData - ruleRunner
	2.3.2 QualityRules - ruleEngineRunner
	2.3.3 QualityFolder - ruleFolderRunner
	2.3.4 QualityExpressions - ExpressionRunner

	2.4 Key SQL Functions to use in your Rules
	2.4.1 Expressions with constants
	2.4.2 Expressions which take expression parameters

	2.5 Reading & Writing RuleSuites
	2.5.1 Reading & Writing RuleSuites
	2.5.2 Versioned rule datasets

	2.6 Running Quality on Databricks
	2.6.1 Running 3.1 builds on Databricks Runtime 9.1 LTS
	2.6.2 Running 3.2.1 builds on Databricks Runtime 10.4
	2.6.3 Running 3.3.0 builds on Databricks Runtime 11.3 LTS
	2.6.4 Running on Databricks Runtime 12.2 LTS
	2.6.5 Running on Databricks Runtime 13.0
	2.6.6 Running on Databricks Runtime 13.1/13.2
	2.6.7 Running on Databricks Runtime 13.3 LTS
	2.6.8 Running on Databricks Runtime 14.0/14.1
	2.6.9 Running on Databricks Runtime 14.3 LTS
	2.6.10 Running on Databricks Runtime 15.4 LTS
	2.6.11 Running on Databricks Runtime 16.4 LTS
	2.6.12 Running on Databricks Runtime 17.3 LTS
	2.6.13 Testing out Quality via Notebooks

	2.7 Running Quality on Fabric
	2.7.1 Running on Fabric 1.3
	2.7.2 Testing out Quality via Notebooks

	3. About
	3.1 History
	3.1.1 Why Quality?
	3.1.2 Gaps in existing Spark Offerings
	3.1.3 Resulting Solution Space
	3.1.4 How did Rules and Folder come about?

	3.2 Performance Choices
	3.2.1 How should rules be evaluated?
	Catalyst Expression Performance

	3.2.2 How should rule results be stored? - JSON vs Structures
	UDF Created Structures
	Expression Created Structures
	Filtering Costs
	Structure Model - storage costs

	3.3 Changelog
	0.1.3.1 24th October, 2025
	0.1.3 4th October, 2024
	0.1.2.1 4th September, 2023
	0.1.2 4th September, 2023
	0.1.1 9th July, 2023
	0.1.0 10th June, 2023
	0.0.3 17th June, 2023
	0.0.2 2nd June, 2023
	0.0.1 8th March, 2023
	the Quality exploration starts 25th April, 2020

	4. Model
	4.1 Rule Model
	4.1.1 Rules
	4.1.2 Rule Results

	4.2 Storage Model
	4.2.1 Where have all the VersionIds and RuleResults gone?

	4.3 Meta Rulesets?

	5. Advanced Usage
	5.1 Bloom Filters
	5.1.1 How does Quality change this?
	5.1.2 What are Bloom Maps?
	5.1.3 Using the Spark stats package
	5.1.4 Using the Quality bloom filters
	5.1.5 Bloom Loading
	5.1.6 Expressions which take expression parameters

	5.2 Map Functions
	5.2.1 Map Loading
	5.2.2 Building the Lookup Maps Directly
	5.2.3 Expressions which take expression parameters

	5.3 Aggregation Functions
	5.3.1 Aggregation Functions
	5.3.2 Aggregation Lambda Functions
	5.3.3 Column DSL
	5.3.4 Type Lookup and Monoidal Merging
	Type Lookup
	Monoidal Merging

	5.4 User Defined Functions
	5.4.1 What about default parameter or different length parameter length Lambdas?
	5.4.2 Higher Order Functions
	5.4.3 Controlling compilation - Tweaking the Quality Optimisations
	Why do all this?

	5.5 PRNG Functions
	5.5.1 RNG Expressions

	5.6 Row ID Functions
	fieldBasedID with MD5 - Seems far slower than other approaches
	Guaranteed Unique ID - How?

	5.7 QualityRules
	5.7.1 Engine
	Serializing
	Debugging
	flatten_rule_results
	resolveWith
	Why is this needed?
	Any reason why I shouldn't try it?

	forceRunnerEval

	5.7.2 Workflow
	Overview and terms
	Suggested approach to QualityRules management

	5.8 QualityFolder
	5.8.1 Set
	5.8.2 flatten_folder_results
	5.8.3 resolveWith

	5.9 QualityExpressions
	5.9.1 strip_result_ddl

	5.10 Validation
	5.10.1 What if I want to actually test the ruleSuite runs?
	5.10.2 What I want to change the dataframe before I show it?
	5.10.3 Why do I get a java.lang.AbstractMethodError when validating?

	5.11 Expression Documentation
	5.12 View Loading
	5.13 Processors - Row By Row
	Stateful expressions ruin the fun
	Thread Safety
	Partitions / initialize?
	5.13.1 Encoders and Input types
	5.13.2 Map Functions
	5.13.3 Performance

	6. SQL Functions Documentation
	6.1 _
	6.2 _lambda_
	6.3 agg_Expr
	6.4 as_uuid
	6.5 big_Bloom
	6.6 callFun
	6.7 coalesce_If_Attributes_Missing
	6.8 coalesce_If_Attributes_Missing_Disable
	6.9 comparable_Maps
	6.10 digest_To_Longs
	6.11 digest_To_Longs_Struct
	6.12 disabled_Rule
	6.13 drop_field
	6.14 failed
	6.15 field_Based_ID
	6.16 flatten_Results
	6.17 flatten_Rule_Results
	6.18 from_yaml
	6.19 hash_Field_Based_ID
	6.20 hash_With
	6.21 hash_With_Struct
	6.22 id_base64
	6.23 id_Equal
	6.24 id_from_base64
	6.25 id_raw_type
	6.26 id_size
	6.27 inc
	6.28 long_Pair
	6.29 long_Pair_Equal
	6.30 long_Pair_From_UUID
	6.31 map_Contains
	6.32 map_Lookup
	6.33 meanF
	6.34 murmur3_ID
	6.35 pack_Ints
	6.36 passed
	6.37 prefixed_To_Long_Pair
	6.38 print_Code
	6.39 print_Expr
	6.40 probability
	6.41 probability_In
	6.42 provided_ID
	6.43 results_With
	6.44 return_Sum
	6.45 reverse_Comparable_Maps
	6.46 rng
	6.47 rng_Bytes
	6.48 rng_ID
	6.49 rng_UUID
	6.50 rule_result
	6.51 rule_Suite_Result_Details
	6.52 small_Bloom
	6.53 soft_Fail
	6.54 soft_Failed
	6.55 strip_result_ddl
	6.56 sum_With
	6.57 to_yaml
	6.58 unique_ID
	6.59 unpack
	6.60 unpack_Id_Triple
	6.61 update_field
	6.62 za_Field_Based_ID
	6.63 za_Hash_Longs_With
	6.64 za_Hash_Longs_With_Struct
	6.65 za_Hash_With
	6.66 za_Hash_With_Struct
	6.67 za_Longs_Field_Based_ID

