
Quality

A High Performance Spark DQ Library

Chris Twiner

Copyright @ 2022 - UBS AG

Table of contents

51. Quality - 0.0.2

51.1 Run complex data quality rules using simple SQL in a batch or streaming Spark application at scale.

51.2 Enhanced Spark Functionality

62. Getting Started

62.1 Building and Setting Up

102.2 Defining & Running your first RuleSuite

122.3 Those are some Quality flavours

152.4 Key SQL Functions to use in your Rules

162.5 Reading & Writing RuleSuites

202.6 Running Quality on Databricks

223. About

223.1 History

243.2 Performance Choices

313.3 Changelog

324. Model

324.1 Rule Model

344.2 Storage Model

354.3 Meta Rulesets?

365. Advanced Usage

365.1 Bloom Filters

385.2 Map Functions

395.3 Aggregation Functions

415.4 User Defined Functions

465.5 PRNG Functions

475.6 Row ID Functions

495.7 QualityRules

555.8 QualityFolder

575.9 Validation

595.10 Expression Documentation

606. SQL Functions Documentation

606.1 _

606.2 _lambda_

606.3 agg_Expr

606.4 as_uuid

606.5 big_Bloom

Table of contents

- 2/68 - Copyright @ 2022 - UBS AG

606.6 callFun

616.7 coalesce_If_Attributes_Missing

616.8 coalesce_If_Attributes_Missing_Disable

616.9 comparable_Maps

616.10 digest_To_Longs

616.11 digest_To_Longs_Struct

616.12 disabled_Rule

616.13 failed

626.14 field_Based_ID

626.15 flatten_Results

626.16 flatten_Rule_Results

626.17 hash_Field_Based_ID

626.18 hash_With

626.19 hash_With_Struct

626.20 id_base64

626.21 id_Equal

636.22 id_from_base64

636.23 id_raw_type

636.24 id_size

636.25 inc

636.26 long_Pair

636.27 long_Pair_Equal

636.28 long_Pair_From_UUID

636.29 map_Contains

636.30 map_Lookup

636.31 meanF

646.32 murmur3_ID

646.33 pack_Ints

646.34 passed

646.35 prefixed_To_Long_Pair

646.36 print_Code

646.37 print_Expr

646.38 probability

656.39 probability_In

656.40 provided_ID

656.41 results_With

656.42 return_Sum

656.43 reverse_Comparable_Maps

Table of contents

- 3/68 - Copyright @ 2022 - UBS AG

656.44 rng

656.45 rng_Bytes

666.46 rng_ID

666.47 rng_UUID

666.48 rule_Suite_Result_Details

666.49 safer_Long_Pair

666.50 small_Bloom

666.51 soft_Fail

666.52 soft_Failed

666.53 sum_With

666.54 unique_ID

676.55 unpack

676.56 unpack_Id_Triple

676.57 update_Field

676.58 za_Field_Based_ID

676.59 za_Hash_Longs_With

676.60 za_Hash_Longs_With_Struct

676.61 za_Hash_With

676.62 za_Hash_With_Struct

686.63 za_Longs_Field_Based_ID

Table of contents

- 4/68 - Copyright @ 2022 - UBS AG

1. Quality - 0.0.2

1.1 Run complex data quality rules using simple SQL in a batch or streaming Spark application at

scale.

Write rules using simple SQL or create re-usable functions via SQL Lambdas

Your rules are just versioned data, store them wherever convenient, use them by simply defining a column.

 - comparableMaps - allow unions or sorting with map columns without json serialising and parsing overhead

 - set syntax - simplified syntax for updating and defaulting

 - Spark Extension - registers common Quality sql functions automatically for Thrift/Hive servers and query optimisations

 - Databricks 12.2 support

 - New id related functions: id_size, id_base64, id_from_base64, id_raw_type and "as_uuid"

Rules are evaluated lazily during Spark actions, such as writing a row, with results saved in a single predicatable and extensible

column.

1.2 Enhanced Spark Functionality

Lookup Functions are distributed across the Spark cluster and held in memory, as such no shuffling is required where the

shuffling introduced by joins may be too expensive:

Support for massive Bloom Filters while retaining FPP (i.e. several billion items at 0.001 would not fit into a normal 2gb byte

array)

Map lookup expressions for exact lookups and contains tests, using broadcast variables under the hood they are a great fit for

small reference data sets

Lambda Functions - user provided re-usable sql functions over late binded columns

Fast PRNG's exposing RandomSource allowing plugable and stable generation across the cluster

Aggregate functions over Maps expandable with simple SQL Lambdas

Row ID expressions including guaranteed unique row IDs (based on MAC address guarantees)

Plus a collection of handy functions to integrate it all.

Coverage

Statement 87.50 Branch 80.60

•

•

•

•

•

•

•

•

•

•

•

Last update: June 2, 2023 18:50:52

Created: June 2, 2023 18:50:52

1. Quality - 0.0.2

- 5/68 - Copyright @ 2022 - UBS AG

https://commons.apache.org/proper/commons-rng/commons-rng-simple/apidocs/org/apache/commons/rng/simple/RandomSource.html

2. Getting Started

2.1 Building and Setting Up

2.1.1 Building The Library

fork,

use the Scala dev environment of your choice,

or build directly using Maven

Building via commandline

For OSS versions (non Databricks runtime - dbr):

but dbr versions will not be able to run tests from the command line (typically not an issue in intellij):

You may also build the shaded uber test jar for easy testing in Spark clusters for each profile:

The uber test jar artefact starts with 'quality_testshade_' instead of just 'quality_' and is located in the testShades/target/

directory of a given build. This is also true for the artefacts of a runtime build job within a full build gitlab pipeline. All of the

required jar's are shaded so you can quickly jump into using Quality in notebooks for example.

2.1.2 Running the tests

In order to run the tests you must follow these instructions to create a fake winutils.

Also ensure only the correct target Maven profile and source directories are enabled in your IDE of choice.

The performance tests are not automated and must be manually run when needed.

2.1.3 Build tool dependencies

Quality is cross compiled for different versions of Spark, Scala and runtimes such as Databricks. The format for artefacts is:

e.g.

The build poms generate those variables via maven profiles, but you are advised to use properties to configure e.g. for Maven:

•

•

•

mvn --batch-mode --errors --fail-at-end --show-version -DinstallAtEnd=true -DdeployAtEnd=true -DskipTests install -P Spark321

mvn --batch-mode --errors --fail-at-end --show-version -DinstallAtEnd=true -DdeployAtEnd=true -DskipTests clean install -P 10.4.dbr

mvn -f testShades/pom.xml --batch-mode --errors --fail-at-end --show-version -DinstallAtEnd=true -DdeployAtEnd=true -Dmaven.test.skip=true clean install -P

10.4.dbr

quality_RUNTIME_SPARKCOMPATVERSION_SCALACOMPATVERSION-VERSION.jar

quality_3.3.0.oss_3.3_2.12-0.7.0-SNAPSHOT.jar

<dependency>

 <groupId>com.sparkutils</groupId>

 <artifactId>quality_${qualityRuntime}${sparkShortVersion}_${scalaCompatVersion}</artifactId>

 <version>${qualityVersion}</version>

</dependency>

2. Getting Started

- 6/68 - Copyright @ 2022 - UBS AG

https://github.com/globalmentor/hadoop-bare-naked-local-fs/issues/2#issuecomment-1444453024

The full list of supported runtimes is below:

2.4 support is deprecated and will be removed in a future version. 3.1.2 support is replaced by 3.1.3 due to interpreted encoder

issues.

13.0 also works on the 12.2.dbr_ build as of 10th May 2023, despite the Spark version difference. 13.1 requires its own version as it

backports 3.5 functionality.

Developing for a Databricks Runtime

As there are many compatibility issues that Quality works around between the various Spark runtimes and their Databricks

equivalents you will need to use two different runtimes when you do local testing (and of course you should do that):

That horrific looking "." on the test groupId is required to get Maven 3 to use different versions many thanks for finding this

Zheng.

It's safe to assume better build tools like gradle / sbt do not need such hackery.

Spark Version sparkShortVersion qualityRuntime scalaCompatVersion

2.4.6 2.4 2.11

3.0.3 3.0 2.12

3.1.3 3.1 2.12

3.1.3 3.1 9.1.dbr_ 2.12

3.2.0 3.2 2.12

3.2.1 3.2 3.2.1.oss_ 2.12

3.2.1 3.2 10.4.dbr_ 2.12

3.3.0 3.3 3.3.0.oss_ 2.12

3.3.0 3.3 11.3.dbr_ 2.12

3.3.0 3.3 12.2.dbr_ 2.12

3.3.0 3.3 13.1.dbr_ 2.12

3.4.0 3.4 3.4.0.oss_ 2.12

3.4.0 3.4 13.1.dbr_ 2.12

Databricks 13.0 and 13.1 is experimental

<properties>

 <qualityVersion>0.7.0-SNAPSHOT</qualityVersion>

 <qualityTestPrefix>3.2.1.oss_</qualityTestPrefix>

 <qualityDatabricksPrefix>10.4.dbr_</qualityDatabricksPrefix>

 <sparkShortVersion>3.2</sparkShortVersion>

 <scalaCompatVersion>2.12</scalaCompatVersion>

</properties>

<dependencies>

 <dependency>

 <groupId>com.sparkutils.</groupId>

 <artifactId>quality_${qualityTestPrefix}${sparkShortVersion}_${scalaCompatVersion}</artifactId>

 <version>${qualityVersion}</version>

 <scope>test</scope>

 </dependency>

 <dependency>

 <groupId>com.sparkutils</groupId>

 <artifactId>quality_${qualityDatabricksPrefix}${sparkShortVersion}_${scalaCompatVersion}</artifactId>

 <version>${qualityVersion}</version>

 <scope>compile</scope>

 </dependency>

</dependencies>

2.1.3 Build tool dependencies

- 7/68 - Copyright @ 2022 - UBS AG

https://stackoverflow.com/a/67743309
https://stackoverflow.com/a/67743309

The known combinations requiring this approach is below:

2.1.4 Using the SQL functions on Spark Thrift (Hive) servers

Using the configuration option:

when starting your cluster, with the appropriate compatible Quality runtime jars - the test Shade jar can also be used -, will

automatically register the additional SQL functions from Quality.

2.4 is not supported as Spark doesn't provide for SQL extensions in this version.

Lambdas, blooms and map's cannot be constructed via pure sql, so the functionality of these on Thrift/Hive servers is limited.

Query Optimisations

The Quality SparkExtension also provides query plan optimisers that re-write as_uuid and id_base64 usage when compared to

strings. This allows BI tools to use the results of view containing as_uuid or id_base64 strings in dashboards. When the BI tool

filters or selects on these strings passed down to the same view, the string is converted back into its underlying parts. This

allows for predicate pushdowns and other optimisations against the underlying parts instead of forcing conversions to string.

These two currently existing optimisations are applied to joins and filters against =, <=>, >, >=, <, <= and "in".

In order to use the query optimisations within normal job / calculator writing you must still register via spark.sql.extensions but

you'll also be able to continue using the rest of the Quality functionality.

Configuring on Databricks runtimes

In order to register the extensions on Databricks runtimes you need to additionally create a cluster init script much like:

where the first path is your uploaded jar location. You can create this script via a notebook on running cluster in the same

workspace with throwaway code much like this:

Spark

Version

sparkShortVersion qualityTestPrefix qualityDatabricksPrefix scalaCompatVersion

3.2.1 3.2 3.2.1.oss_ 10.4.dbr_ 2.12

3.3.0 3.3 3.3.0.oss_ 11.3.dbr_ 2.12

3.3.0 3.3 3.3.0.oss_ 12.2.dbr_ 2.12

3.4.0 3.4 3.4.0.oss_ 13.1.dbr_ 2.12

spark.sql.extensions=com.sparkutils.quality.impl.extension.QualitySparkExtension

Spark 2.4 runtimes are not supported

Pure SQL only

#!/bin/bash

cp /dbfs/FileStore/XXXX-quality_testshade_12_2_ver.jar /databricks/jars/quality_testshade_12_2_ver.jar

val scriptName = "/dbfs/add_quality_plugin.sh"

val script = s"""

#!/bin/bash

cp /dbfs/FileStore/XXXX-quality_testshade_12_2_ver.jar /databricks/jars/quality_testshade_12_2_ver.jar

"""

import java.io._

2.1.4 Using the SQL functions on Spark Thrift (Hive) servers

- 8/68 - Copyright @ 2022 - UBS AG

You must still register the Spark config extension attribute, but also make sure the Init script has the same path as the file you

created in the above snippet.

2.1.5 2.4 Support requires 2.4.6 or Janino 3.0.16

Due to Janino #90 using 2.4.5 directly will bring in 3.0.9 janino which can cause VerifyErrors, use 2.4.6 if you can't use a 3.x

Spark.

new File(scriptName).createNewFile

new PrintWriter(scriptName) {write(script); close}

Last update: June 2, 2023 18:50:52

Created: June 2, 2023 18:50:52

2.1.5 2.4 Support requires 2.4.6 or Janino 3.0.16

- 9/68 - Copyright @ 2022 - UBS AG

https://github.com/janino-compiler/janino/issues/90

2.2 Defining & Running your first RuleSuite

Your expressions used, in dq/triggers, output expressions (for Rules and Folder) and lambda functions can contain any valid SQL

that does not include Nondeterministic functions such as rand(), uuid() or indeed the Quality random and unique_id() functions.

Prior to 3.4 exists, in, and scalar subqueries (correlated or not) could not be used in any Quality rule SQL snippets.

3.4 has allowed the use of most sub query patterns, such as checking foreign keys via an exists in a dq rule where the data is to large

for maps, or selecting the maximum matching value in an output expression. There are some oddities like you must use an alias on

the input dataframe if a correlated subquery also has the same field names, not doing so results in either silent failure or at best an

'Expression "XXX" is not an rvalue' compilation error. The ruleEngineWithStruct transformer will automatically add an alias of 'main'

to the input dataframe.

Lambdas however introduce some complications, 3.4 quite reasonably had no intention of supporting the kind of thing Quality is

doing, so there is code making it work for the obvious use case of DRY using row attributes. Attempting to use a lambda with

parameters that are not attributes will result in an error e.g. given genMax:

Calling with genMax(i) where i is an column attribute will work, calling with genMax(i * 1) will throw a QualityException.

This applies equally to Databricks 12.2 which back-ported this awesome functionality.

2.2.1 withColumn is BAD - how else can I add columns?

I understand repeatedly calling withColumn/withColumnRenamed can cause performance issues due to excessive projections but

how else can I add a RuleSuite in Spark?

The transform functions allow easy chaining of operations on DataFrames. However you can equally use the non "xxxxxF"

functions such as addOverallResultsAndDetails with the same names to directly add columns and rule processing.

import com.sparkutils.quality._

// setup all the Quality sql functions

registerQualityFunctions()

// define a rule suite

val rules = RuleSuite(rsId, Seq(

 RuleSet(Id(50, 1), Seq(

 Rule(Id(100, 1), ExpressionRule("a % 2 == 0")),

 Rule(Id(100, 2), ExpressionRule("b + 20 < 10")),

 Rule(Id(100, 3), ExpressionRule("(100 * c) + d < e"))

)),

 RuleSet(Id(50, 2), Seq(

 Rule(Id(100, 5), ExpressionRule("e > 60 or e < 30"))...

)),

 RuleSet(Id(50, 3), Seq(

 Rule(Id(100, 9),ExpressionRule("i = 5")),

...

))

), Seq(

 LambdaFunction("isReallyNull", "param -> isNull(param)", Id(200,134)),

 LambdaFunction("isGreaterThan", "(a, b) -> a > b", Id(201,131))

))

// add the ruleRunner expression to the DataFrame

val withEvaluatedRulesDF = sparkSession.read.parquet(...).

 withColumn("DataQuality", ruleRunner(rules))

withEvaluatedRulesDF.write. ... // or show, or count, or some other action

3.4 & Sub queries

LambdaFunction("genMax", "ii -> select max(i_s.i) from tableName i_s where i_s.i > ii", Id(2404,1)))

// read a file and apply the rules storing results in the column DataQuality

sparkSession.read.parquet("theFilePath").

 transform(addDataQualityF(rules, "DataQuality"))

// read a file and apply the rules storing the overall result and details in the columns overallResult, dataQualityResults

sparkSession.read.parquet("theFilePath").

 transform(addOverallResultsAndDetailsF(rules, "overallResult",

 "dataQualityResults"))

2.2 Defining & Running your first RuleSuite

- 10/68 - Copyright @ 2022 - UBS AG

2.2.2 Filtering the Results

The two most common cases for running DQ rules is to report on and filter out bad rows. Filtering can be implemented for a

RuleSuiteResult with:

Getting all of the rule results can be implemented with the flattenResults function:

Flatten results unpacks the resulting structure, including unpacking all the Id and Versions Ints combined into the single LongType

for storage.

withEvaluatedRulesDF.filter("DataQuality.overallResult = passed()")

val exploded = withEvaluatedRulesDF.select(expr("*"),

 expr("explode(flattenResults(DataQuality))").

 as("struct")).select("*","struct.*")

Last update: June 2, 2023 18:50:52

Created: June 2, 2023 18:50:52

2.2.2 Filtering the Results

- 11/68 - Copyright @ 2022 - UBS AG

2.3 Those are some Quality flavours

Quality has three main flavours with sprinklings of other Quality ingredients like the sql function suite.

These flavours are provided by three "runners" which add a Column to a Spark Dataset/Dataframe.

2.3.1 Quality / QualityData - ruleRunner

Execute SQL based data validation rules, capture all the results and store them with your data for easy and fast access.

Example Usage: Validating in-bound data or the results of a calculation.

What is stored:

Rule Suite - Id(1, 1)

overallResult == failed

ruleSetResults

Rule Set - Id(2, 1)

overallResult == failed

ruleResults

Rule - Id(3, 3) - failed

Rule - Id(4, 2) - soft failed

Rule Set - Id(3, 2)

overallResult == passed

ruleResults

Rule - Id(5, 1) - soft failed

Rule - Id(6, 1) - passed

2.3.2 QualityRules - ruleEngineRunner

QualityRules extends the base Quality framework to provide the ability to generate output based on a single SQL rule matching

the input data. Effectively an auditable large scale SQL case statement.

Conceptually trigger rules are the when and Output rules are the then ordered by salience.

Example Usage: Derivation Logic.

What is stored:

2.3 Those are some Quality flavours

- 12/68 - Copyright @ 2022 - UBS AG

runner result column

ruleSuiteResults

Rule Suite - Id(1, 1)

overallResult == failed

ruleSetResults

Rule Set - Id(2, 1)

overallResult == failed

ruleResults

Rule - Id(3, 3) - failed

Rule - Id(4, 2) - *Salience 1000* - passed

Rule Set - Id(3, 2)

overallResult == passed

ruleResults

Rule - Id(5, 1) - soft failed

Rule - Id(6, 1) - *Salience 500* - passed selected as the salience is the lowest

salientResult == suite Id(1,1), set Id(3,2), rule Id(6,1)

result - The Id(6,1) Output Expression - structure, arrays, map etc. (called from the salientRule)

2.3.3 QualityFolder - ruleFolderRunner

QualityFolder extends QualityRules providing the ability to change values of attributes based on any number of SQL rules

matching the input data.

Unlike QualityRules which uses salience to select only one Output expression, Folder uses salience to order the execution of all

the matching Trigger's paired Output Expressions - folding the results as it goes.

Example Usage: Correction of in-bound data to enable subsequent calculators to process, defaulting etc.

What is stored:

2.3.3 QualityFolder - ruleFolderRunner

- 13/68 - Copyright @ 2022 - UBS AG

https://en.wikipedia.org/wiki/Fold_(higher-order_function)#:~:text=In-20functional-20programming-2C-20fold-20(also,constituent-20parts-2C-20building-20up-20a)

runner result column

ruleSuiteResults

Rule Suite - Id(1, 1)

overallResult == failed

ruleSetResults

Rule Set - Id(2, 1)

overallResult == failed

ruleResults

Rule - Id(3, 3) - failed

Rule - Id(4, 2) - *Salience 1000* - passed

Rule Set - Id(3, 2)

overallResult == passed

ruleResults

Rule - Id(5, 1) - soft failed

Rule - Id(6, 1) - *Salience 500* - passed

result (from below *folding*)

sort all 'passed' Rule's Output Expressions by salience ascending Id(6,1) then Id(4,2)

Use starting expression as «output»

Call next Output Expression with «output» as it's input

Use the result as «output»

no

More matching Output expressions?
yes

Use «output» as result

Last update: June 2, 2023 18:50:52

Created: June 2, 2023 18:50:52

2.3.3 QualityFolder - ruleFolderRunner

- 14/68 - Copyright @ 2022 - UBS AG

2.4 Key SQL Functions to use in your Rules

2.4.1 Expressions with constants

passed() - the value representing a passed rule

failed() - the value representing a failed rule

softFailed() - the value representing a failed rule which doesn't break the bank

disabledRule() - the value representing a rule which has been disabled and should be ignored

2.4.2 Expressions which take expression parameters

probability(x) - returns the probability (between 0.0 for a fail and 1.0 for pass) of a rule result

packInts(lower, higher) - returns a Long with both the lower and higher int's packed in, used for id matching

softFail(x) - if the expression doesn't result in a Passed it returns softFailed() which does not trigger an overall failed()

RuleSuite, this is ideal for when you want to flag a rule as passing a test you wish to query on later but do not care if it doesn't

pass. It can be treated as a "warn" or passed() expression.

ruleSuiteResultDetails(ruleSuiteResult) - separates the RuleSuiteResult.overallResult from the rest of the structure should it

be needed typically this is done via the addOverallResultsAndDetailsF

•

•

•

•

•

•

•

•

Last update: June 2, 2023 18:50:52

Created: June 2, 2023 18:50:52

2.4 Key SQL Functions to use in your Rules

- 15/68 - Copyright @ 2022 - UBS AG

2.5 Reading & Writing RuleSuites

2.5.1 Reading & Writing RuleSuites

Typically you'd save the RuleSuite in configuration tables within a Database or Delta or some other easy to edit store.

Saving:

The field names used follow the convention of the default Product Encoder but can be renamed as desired.

Similarly, reading the rules can be as simple as:

The column names used during reading are not assumed and must be specified.

2.5.2 Versioned rule datasets

The user is completely free to chose their own version management approach, but the design is aimed at immutability and

evidencing.

// The lambda functions from the RuleSuite

val lambdaDF = toLambdaDS(rules)

lambdaDF.write

// The rest of the rules

val ruleDF = toRuleSuiteDF(rules)

ruleDF.write

val rereadWithoutLambdas = readRulesFromDF(ruleDF,

 col("ruleSuiteId"),

 col("ruleSuiteVersion"),

 col("ruleSetId"),

 col("ruleSetVersion"),

 col("ruleId"),

 col("ruleVersion"),

 col("ruleExpr")

)

val reReadLambdas = readLambdasFromDF(lambdaDF.toDF(),

 col("name"),

 col("ruleExpr"),

 col("functionId"),

 col("functionVersion"),

 col("ruleSuiteId"),

 col("ruleSuiteVersion")

)

val reReadRuleSuite = integrateLambdas(rereadWithoutLambdas, reReadLambdas)

2.5 Reading & Writing RuleSuites

- 16/68 - Copyright @ 2022 - UBS AG

To make things easy a simple scheme with library functions in the simpleVersioning package are provided:

2.5.2 Versioned rule datasets

- 17/68 - Copyright @ 2022 - UBS AG

Rules can be added to rulesets (or indeed new rulesets) with just a single row within the input DF, this must increase the RuleSet

AND RuleSuites version:

Similarly, you can change a rule by adding a new row which increments the Rule Id's, RuleSet AND RuleSuites versions:

To delete a rule you can either use disabled() to flag the rule is inactivated or DELETED to flag the rule to be removed from a

RuleSet, as before each version must be incremented:

OutputExpressions may be re-used with different versions (be it for QualityRules or QualityFolder), each rule row that needs to use

a later OutputExpression must increment all of it's Id versions. You may are advised to use lambdas to soften the impact:

Lambda Expressions for a RuleSuite simply take the latest version for a given lambda id. If you want to delete a lambda (for

example you have used a name that is now an official Spark sql function) you can add a DELETED row for a given RuleSuite with a

higher version.

1.

ruleSuiteId ruleSuiteVersion ruleSetId ruleSetVersion ruleId ruleVersion ruleExpr

1 1 1 1 1 1 /*

existing

rule rows

*/ true()

1 2 1 2 2 1 /* new

rule */

failed()

2.

ruleSuiteId ruleSuiteVersion ruleSetId ruleSetVersion ruleId ruleVersion ruleExpr

1 1 1 1 1 1 /*

existing

rule row

*/ true()

1 2 1 2 1 2 /* new

version

of the

above

rule */

failed()

3.

ruleSuiteId ruleSuiteVersion ruleSetId ruleSetVersion ruleId ruleVersion ruleExpr

1 1 1 1 1 1 /*

existing

rule row

*/ true()

1 2 1 2 1 2 DELETED

4.

ruleSuiteId ruleSuiteVersion ruleSetId ruleSetVersion ruleId ruleVersion ruleExpr ruleEngineSalience ruleEngineId ruleEngineVersion

1 1 1 1 1 1 true() 60 100 1

1 2 1 2 1 2 true() 60 100 2

5.

ruleSuiteId ruleSuiteVersion name functionId functionVersion ruleExpr

1 1 aToTrue 1 1 /** oops */ a -> a

1 1 always1 2 1 a -> 1

1 2 aToTrue 1 2 /** corrected */ a

-> true()

1 2 always1 2 2 DELETED

2.5.2 Versioned rule datasets

- 18/68 - Copyright @ 2022 - UBS AG

To use these you replace the above with:

The "readVersioned" functions modify the dataframe per the above logic to create full sets of ruleSuiteId + ruleSuiteVersion

pairs.

The "integrateVersioned" functions will first try the same ruleSuiteId + ruleSuiteVersion pairs and were not present will take the

next lowest available version. This runs on the assumption you if didn't need to change any OutputExpressions for a new

ruleSuite version why should you need to create fake entries.

import com.sparkutils.quality._

import simpleVersioning._

val rereadWithoutLambdas = readVersionedRulesFromDF(ruleDF,

 ...

)

val reReadLambdas = readVersionedLambdasFromDF(lambdaDF.toDF(),

 ...

)

val outputExpressions = readVersionedOutputExpressionsFromDF(outputDF,

 ...

)

val rereadWithLambdas = integrateVersionedLambdas(rereadWithoutLambdas, lambdas)

val (reread, missingOutputExpressions) = integrateVersionedOutputExpressions(rereadWithLambdas, outputExpressions)

Last update: June 2, 2023 18:50:52

Created: June 2, 2023 18:50:52

2.5.2 Versioned rule datasets

- 19/68 - Copyright @ 2022 - UBS AG

2.6 Running Quality on Databricks

The aim is to have explicit support for LTS', other interim versions may be supported as needed.

2.6.1 Running 3.1 builds on Databricks Runtime 9.1 LTS

Use the 9.1.dbr build / profile, the artefact name will also end with _9.1.dbr. OSS 3.1 do not need to worry about this and should

not use this profile.

Databricks has back-ported TreePattern including the final nodePatterns in HigherOrderFunction and 3.2's Conf class. As such

very old versions of non-opensource Quality (<=0.5.0) will fail with AbstractMethodError's when lambda's are used are 9.1 as

the OSS binary version of HigherOrderFunction does not have nodePattern. Similarly the quality_testshade jar must use the

9.1.dbr version due to Conf changes.

The 9.1.dbr build class files are built on the fake TreePattern and HigherOrderFunction present in the 9.1.dbr-scala source

directory, they are however removed in the jar.

ResolveTableValuedFunctions and ResolveCreateNamedStruct are removed from resolveWith as they are binary incompatible

with OSS. This does not seem to effect building namedstructs using resolveWith.

2.6.2 Running 3.2.1 builds on Databricks Runtime 10.4

Use the 10.4.dbr build / profile, the artefact name will also end with _10.4.dbr.

DBR 10.4 backports canonicalisation changes which allow Quality and any other code using explode and arrays to functionally

run. Performance is still known to be affected. These fixes are not present in the 3.2.1 OSS release, although performance

improvements may be back-ported.

ResolveTables, ResolveAlterTableCommands and ResolveHigherOrderFunctions are removed from resolveWith as they are binary

incompatible with OSS.

10.2 version support was removed in 0.0.1

2.6.3 Running 3.3.0 builds on Databricks Runtime 11.3 LTS

Use the 11.3.dbr build / profile, the artefact name will also end with _11.3.dbr. Due to a backport of SPARK-39316 only 11.3 LTS

is supported (although likely 11.2 will also run), this changed the result type of Add causing incorrect aggregation precision via

aggExpr (Sum and Average stopped using Add for this reason).

2.6.4 Running on Databricks Runtime 12.2 LTS

DBR 12.2 backports at least SPARK-41049 from 3.4 so the base build is closer to 3.4 than the advertised 3.3.2. Building/Testing

against 3.3.0 is the preferred approach for maximum compatibility.

2.6.5 Running on Databricks Runtime 13.0

As of 6th June 2023 0.0.2 run against the 12.2.dbr LTS build also works on 13.0.

2.6.6 Running on Databricks Runtime 13.1

13.1 backports a number of 3.5 oss changes, the 13.1.dbr build must be used - as of 25th May 2023.

Only 10.4 LTS is supported

2.6 Running Quality on Databricks

- 20/68 - Copyright @ 2022 - UBS AG

https://issues.apache.org/jira/browse/SPARK-39316
https://issues.apache.org/jira/browse/SPARK-41049

2.6.7 Testing out Quality via Notebooks

You can use the appropriate runtime quality_testshade artefact jar (e.g. DBR 11.3) from maven to upload into your workspace /

notebook env (or add via maven). When using Databricks make sure to use the appropriate _Version.dbr builds.

Then using:

in your cell will run through all of the test suite used when building Quality.

In Databricks notebooks you can set the path up via:

Ideally at the end of your runs you'll see - after 10 minutes or so and some stdout - for example on DBR 11.3 a run provides:

import com.sparkutils.quality.tests.TestSuite

import com.sparkutils.qualityTests.SparkTestUtils

SparkTestUtils.setPath("path_where_test_files_should_be_generated")

TestSuite.runTests

val fileLoc = "/dbfs/databricks/quality_test"

SparkTestUtils.setPath(fileLoc)

Time: 682.626

OK (298 tests)

Finished. Result: Failures: 0. Ignored: 0. Tests run: 298. Time: 682626ms.

import com.sparkutils.quality.tests.TestSuite

import com.sparkutils.qualityTests.SparkTestUtils

fileLoc: String = /dbfs/databricks/quality_test

Last update: June 2, 2023 18:50:52

Created: June 2, 2023 18:50:52

2.6.7 Testing out Quality via Notebooks

- 21/68 - Copyright @ 2022 - UBS AG

https://s01.oss.sonatype.org/content/repositories/releases/com/sparkutils/quality_testshade_11.3.dbr_3.3_2.12/

3. About

3.1 History

3.1.1 Why Quality?

When looking at the Data Quality options for a data mesh standard runtime offering we identified gaps in the available platforms,

so we asked:

We ended up with a highly peformant and extensible row-level SQL based rule engine with low storage costs and a high degree of

optimsation for both Spark and Databricks Runtimes.

3.1.2 Gaps in existing Spark Offerings

Deequ and databricks dq were unsuitable for the meshes requirements, crucially these tools (and others such as OwlDQ) could

not run at low cost with tight SLAs, typically requiring processing the data once to get DQ and then once more to save with DQ

information or to handle streamed data, not too surprising given their focus on quality across large data sets rather than at a row

processing level as a first class citizen. An important use case for DQ rules within this mesh platform is the ability to filter out

bad rows but also to allow the consumer of the data to decide what they filter, requiring the producers results to ideally be stored

with data rows themselves. Additionally, and perhaps most importantly, they do not support arbitrary user driven rules without

recoding.

As such our notional library needs to be:

fast to integrate into existing Spark action without much overhead

auditable, it should be clear which rule generated which results

capable of handling streamed data

capable of being scripted

integrate with DataFrames directly, also allowing consumer driven rules in addition to upstream producer DQ

be able to fit results into a single field (e.g. a map structure of name to results) stored with the row at time of writing the

results

3.1.3 Resulting Solution Space

In order to execute efficiently with masses of data the calculation of data quality must scale with Spark, this requires either map

functions, UDFs or better still Catalyst Expressions, enabling simple SQL to be used. Storage of results for a row could be json,

xml or using nested structures.

The evaluation of these solutions can be found in the next sections.

3.1.4 How did Rules and Folder come about?

Whilst developing a bookkeeping application a need for simple rules that generate an output was raised. The initial approach

taken, to effectively generate a case statement, ran into size and scale limitations. The architect of the application asked - can

you have an output sql statement for the DQ rules? The result is QualityRules, although it should probably be called

QualityCase…

QualityFolder came from a related application which had a need to transform data - providing defaulting in some circumstances -

but still had to be auditable and extensible as QualityRules was.

What would our Data Quality library look like?

•

•

•

•

•

•

3. About

- 22/68 - Copyright @ 2022 - UBS AG

https://github.com/awslabs/deequ
https://github.com/databrickslabs/dataframe-rules-engine

Last update: June 2, 2023 18:50:52

Created: June 2, 2023 18:50:52

3.1.4 How did Rules and Folder come about?

- 23/68 - Copyright @ 2022 - UBS AG

3.2 Performance Choices

3.2.1 How should rules be evaluated?

Performance wise there is a clear winner as to approach for generating results:

The green row is using the map function which is unfortunately the most straightforward to program. The blue is the baseline of

processing a row without DQ and the orange is using withColumn.

withColumn can use UDFs or inbuilt Catalyst style functions - the latter giving better performance and ability to more naturally

integrate with spark, this review echos the findings and hinting at the effects of catalyst.

Overall storage winner is nested columns, it has lower storage costs, is as fast as json to serialize (via an Expression) and

faster to query with predicate push down support for faster filtering. Details of the analysis are below.

Using withColumn is strongly discouraged, it very quickly introduces performance issues in spark code, prefer to use select and the

Quality transform functions. A large part of the performance hit for using UDFs over Expressions is due to the conversion from user

types to InternalRow - this cannot be avoided.

Catalyst Expression Performance

This diagram illustrates the overhead of cost of using Expressions using a simulated complexity of rule suites with increasing

number of column checks (c here is the column number, for a simple even check): ($c % 2) = 0

Note

3.2 Performance Choices

- 24/68 - Copyright @ 2022 - UBS AG

https://medium.com/@fqaiser94/udfs-vs-map-vs-custom-spark-native-functions-91ab2c154b44

This measurement against 1k rows shows for the last column 230ms for 27 rules each with 27 columns applied, i.e. 0.23 ms per

row for 84 rules total (albeit simple rules) on a single 4 core machine (24G heap). Orange representing the default compiled

evaluations.

However, this doesn't illustrate very well how things can scale. Running the 27 rules against 1m rows we see:

3.2.1 How should rules be evaluated?

- 25/68 - Copyright @ 2022 - UBS AG

with a mean time of 80,562ms for 1m rows that's 0.08ms per row for 27 rules, again orange representing the default options for

compilation. Conversely, the same test run against 1m rows without rules has a mean of 14,052 - so 66,510ms overhead for

processing 27m rules (i.e. 0.0025ms per simple rule).

Stepping the complexity up a bit to 150 columns at 100k (24G ram) with a baseline no rules time of 15,847ms. Running with

rules gives:

3.2.1 How should rules be evaluated?

- 26/68 - Copyright @ 2022 - UBS AG

so for compiled at a mean of 174,583ms we have 15m rules run at 0.011ms per rule. So although increased rule count obviously

generates more work the overhead is still low per each rule even with larger counts and the benefit of the default (orange)

compilation is visible (see the note at the bottom for when this may not be the case).

When using RuleEngineRunners you should try to re-use output expressions (RunOnPassProcessor) wherever possible to improve

performance.

For very large complex rules (tested sample is 1k rules with over 50k expressions - over 30s compilation for a show and write)

compilation can dominate time, as such you can set forceRunnerEval to true on RuleRunner and RuleEngineRunner to skip

compilation. While compilation can be slow the execution is heavily optimised with minimal memory allocation, as such you should

balance this out when using huge RuleSuites.

Disabled generation, via ruleRunner(ruleSuite, compileEvals = false, forceRunnerEval = true) , takes 208,518ms for 150 rules over

100k data - 34s longer than the default, this of course adds up fast over millions of rows.

Sometimes Interpreted Is Better

Disabling compilation entirely is not a great idea

Last update: June 2, 2023 18:50:52

Created: June 2, 2023 18:50:52

3.2.1 How should rules be evaluated?

- 27/68 - Copyright @ 2022 - UBS AG

3.2.2 How should rule results be stored? - JSON vs Structures

While Jackson is faster than circe serialization for JSON it doens't serialize easily so only used for comparison as its the fastest

possible serialization framework.

UDF Created Structures

When serializing rule results to Nested Rows via UDF struct creation (shown as Orange) the results are very expensive, the more

complex the rule setup the worse the performance. In comparison Jackson (shown as blue) keeps a low cost as it's just a string

(the cost instead is in parsing, storage and filtering)

Expression Created Structures

When serializing rule results with a custom Expression (shown as orange, using eval only - without custom compilation), Jackson

(shown as blue) based serialisation looses it's clear lead with Expressions closing the gap as complexity increases:

Note

3.2.2 How should rule results be stored? - JSON vs Structures

- 28/68 - Copyright @ 2022 - UBS AG

Filtering Costs

Filtering on a nested column with deep queries (shown in red) is as expected faster the same query with a json structure. Nested

predicates can be pushed down to the underlying storage for efficient querying.

3.2.2 How should rule results be stored? - JSON vs Structures

- 29/68 - Copyright @ 2022 - UBS AG

Depending on the Databricks runtime used the benefit from seperating the overallResult field to a top level field can be 10-20%

faster. While each new release of Spark and DBR closes this gap it is recommended to use addOverallResultsAndDetailsF to split the

fields.

This not only improves filter speed but also benefits with a simpler filter sql.

Structure Model - storage costs

A naive structure representing RuleSuite, RuleSet and Rule results is actually less efficient than storage of JSON, however the

current compressed model used by Quality has low overhead for even complex results.

Note

Last update: June 2, 2023 18:50:52

Created: June 2, 2023 18:50:52

3.2.2 How should rule results be stored? - JSON vs Structures

- 30/68 - Copyright @ 2022 - UBS AG

3.3 Changelog

0.0.2

#16 - Remove winutils requirements for testing and usage

#13 - Support 3.4's sub query usage in rules/trigger, output expressions and lambdas

#12 - Introduce the use of underscores instead of relying on camel case for function sql names, inline with Spark built-in

functions

#10 - Base64 functions added for RowID encoding and decoding via base64 (more suitable for BI tools)

#9 - Add AsymmetricFilterExpressions with AsUUID and IDBase64 implementation, allows expressions used in field selects to be

reversed, support added for optimiser rules through the SparkExtension

#8 - Add set syntax for easier defaulting sql, removing duplicative cruft from intention

#7 - SparkSessionExtension to auto register Quality functions - does not work in 2.4, starting with this release 2.4 support is

deprecated

#6 - Simple as_uuid function

#5 - Spark 3.4 and DBR 12.2 LTS support

#4 - comparableMaps / reverseComparableMaps functions, allowing map comparison / set operations (e.g. sort, distinct etc.)

0.0.1

Initial OSS version.

(many internal versions in between)

the Quality exploration starts

Start of investigations into how to manage DQ more effectively within Spark and the mesh platform.

2nd June, 2023

8th March, 2023

25th April, 2020

Last update: June 2, 2023 18:50:52

Created: June 2, 2023 18:50:52

3.3 Changelog

- 31/68 - Copyright @ 2022 - UBS AG

https://github.com/sparkutils/quality/issues/16
https://github.com/sparkutils/quality/issues/13
https://github.com/sparkutils/quality/issues/12
https://github.com/sparkutils/quality/issues/10
https://github.com/sparkutils/quality/issues/9
https://github.com/sparkutils/quality/issues/8
https://github.com/sparkutils/quality/issues/7
https://github.com/sparkutils/quality/issues/6
https://github.com/sparkutils/quality/issues/5
https://github.com/sparkutils/quality/issues/4

4. Model

4.1 Rule Model

4.1.1 Rules

VersionedIDs are used throughout, changes to a Rule should imply a new Rule version, a new RuleSet version and a new

RuleSuite version.

4. Model

- 32/68 - Copyright @ 2022 - UBS AG

RunOnPassProcessor (output expressions) should only be provided when using the ruleEngineRunner and are treated, like

Lambdas, as top level unique concepts. You should organise using output expressions wherever possible as it's not only easier to

conceptualise but it's also faster.

4.1.2 Rule Results

SoftFailed results do not cause the RuleSet or RuleSuite to fail

DisabledRule results also do not cause the RuleSet or RuleSuite to fail but signal a rule has been disabled upstream

Probability results with over 80 percent are deemed to have Passed, you may override this with the

RuleSuite.withProbablePass function after creating the RuleSuite.

RuleResultWithProcessor is only used when using the ruleEngineRunner and is not returned in the column, rather the result of

the expression is - shown above as call to "data".

•

•

•

Last update: June 2, 2023 18:50:52

Created: June 2, 2023 18:50:52

4.1.2 Rule Results

- 33/68 - Copyright @ 2022 - UBS AG

4.2 Storage Model

Nested columns, with nested columns, this lets you use Spark SQL to do filters and have predicate pushdown. Sample filter:

actual type:

Alternatively when creating with addOverallResultsAndDetails you have the

moved to the top level, leaving

4.2.1 Where have all the VersionIds and RuleResults gone?

In order to optimise storage and marshalling the VersionId parts are packed into a single LongType. RuleResults are similarly

encoded into an IntegerType:

Failed => FailedInt // 0

SoftFailed => SoftFailedInt // -1

Disabled => DisabledInt // -2

Passed => PassedInt // 100000

Probability(percentage) => (percentage * PassedInt).toInt

When the developer wishes to retrieve the objects they may use the encoders directly:

the developer can then interegate the data quality results alongside their relevant data.

df.select(expr("filter(map_values(DataQuality.ruleSetResults),

 ruleSet -> size(filter(map_values(ruleSet.ruleResults),

 result -> probability(result) > 0.3)) > 0)").as("filtered"))

struct<id: LongType, overallResult: IntegerType,

 ruleSetResults: map<LongType,

 struct<overallResult: IntegerType,

 ruleResults: map<LongType, IntegerType>>>>

overallResult: IntegerType

details: struct<id: LongType,

 ruleSetResults: map<LongType,

 struct<overallResult: IntegerType,

 ruleResults: map<LongType, IntegerType>>>>

•

•

•

•

•

// frameless is used to encode

import frameless._

// imports the encoders for RuleSuiteResult

import com.sparkutils.quality.implicits._

// derive an encoder for the pair with a user type and the RuleSuiteResult for a given row

implicit val enc = TypedExpressionEncoder[(TestIdLeft, RuleSuiteResult)]

// select the fields needed for the user type and the DataQuality result (or details with RuleResult, RuleSuiteResultDetails for seperate overall results and

details)

val ds = df.selectExpr("named_struct('left_lower', `1`, 'left_higher', `2`)","DataQuality").as[(TestIdLeft, RuleSuiteResult)]

Last update: June 2, 2023 18:50:52

Created: June 2, 2023 18:50:52

4.2 Storage Model

- 34/68 - Copyright @ 2022 - UBS AG

4.3 Meta Rulesets?

Quality introduces a "Meta Ruleset" approach for added automation. Meta Rule sets evaluate each column of a DataFrame to see

if a Rule should be generated for that column.

Null checks, type checks etc. may all be applied generically without laboriously copying the rule for each applicable column, just

define a single argument lambda expression. In order for this to work and be extensible you require stable ordering for each

column used.

An optional last paramater for integrateMetaRuleSets allows transformation of a generated column dataframe, allowing joins

with other lookup tables for the column definition or applicable rules to generate for the column for example.

// if you wish to use Meta Rule Sets

val metaRuleSets = readMetaRuleSetsFromDF(metaRuleDF,

// an sql filter of the schema from a provided dataframe - name,

//datatype (as DDL) and nullable can be filtered

 col("columnFilter"),

// single arg lambda to apply to all fields from the column filter

 col("ruleExpr"),

 col("ruleSetId"),

 col("ruleSetVersion"),

 col("ruleSuiteId"),

 col("ruleSuiteVersion")

)

// make sure we use the correct rule suites for the dataset, e.g.

val filteredRuleSuites: RuleSuiteMap = Map(ruleSuiteId -> rules)

val theDataframe = sparkSession.read.parquet("theFilePath")

// Guarantee each column always returns the same unique position

val stablePositionsFromColumnNames: String => Int = ???

// filter theDataframe columns and generate rules for each Meta

// RuleSet and re-integrate them

val newRuleSuiteMap = integrateMetaRuleSets(theDataframe, filteredRuleSuites,

 metaRuleSets, stablePositionsFromColumnNames)

Last update: June 2, 2023 18:50:52

Created: June 2, 2023 18:50:52

4.3 Meta Rulesets?

- 35/68 - Copyright @ 2022 - UBS AG

5. Advanced Usage

5.1 Bloom Filters

Bloom Filters are probabalistic data structures that, for a given number of items and a false positive probability (FPP) provides a

mightContain function. This function guarantees that if an item is not in the bloom filter it will return false, however if it returns

true this is to a probability defined by the FPP value.

In contrast to a Set which requires the items (or at least their hash values) to be stored individually blooms make use of multiple

blocks and apply bit setting based on hashes of the input value over some function. These resulting blocks and bitsets are far

smaller in memory and storage usage than a typical set. For example it's possible to store hundreds of millions of items within a

bloom and still keep withn a normal Java byte array boundary.

This act of using bit flipping also allows blooms to be or'd for the same size and FPP, which is great for aggregation functions in

Spark.

Whilst blooms are great the guarantees break when:

The number of items far exceeds the initial size used to create the bloom - false is still guaranteed to not be present but the true

value will no longer represent FPP, the bloom has degraded

The number of bits required to store the initial number of items at the FPP exceed what can be represented by the bloom

algorithm.

If you attempt to store billions of items within a bloom at a high FPP you will quickly fall foul of 2, and this is easily done with

both the Spark stats.package and the current bloom filters on Databricks. This makes them next to useless for large dataset

lookups on typical bloom implementations.

5.1.1 How does Quality change this?

It can't change the fundemental laws of bloom filters, if you use the number of bits up your bloom filter is next to useless. You can

however add multiple Java byte arrays and bucket the hashes across them. This works great up to about 1.5b items in a typical

aggregation function within Spark, however Spark only allows a maximum of 2Gb for an InternalRow - of which aggregates are

stored in.

Quality provides three bloom implementations the Spark stats package, small - which buckets within an InternalRow (1.2-1.5b

items max whilst maintaining FPP) - and big which doesn't use Spark aggregations to store the results of aggregations but rather

a shared file system such as Databricks dbfs.

Both the small and big bloom functions use Parquet's bloom filter implementation which both significantly faster and has better

statistical properties than Sparks/Guavas or Breezes.

5.1.2 What are Bloom Maps?

Bloom Maps are identifiers to a bloom filter. The examples below show how to create the key is to use the SparkBloomFilter or

bloomFilter functions to provide the value and the FPP is required.

Both registers the Bloom Map, the smallBloom and bigBloom aggregation functions and the probabilityIn function.

5.1.3 Using the Spark stats package

1.

2.

registerBloomMapAndFunction(bloomFilterMap)

// generate a dataframe with an id column

val df = sqlContext.range(1, 20)

// build a bloomfilter over the id's

val bloom = df.stat.bloomFilter("id", 20, 0.01)

// get the fpp and build the map

val fpp = 1.0 - bloom.expectedFpp()

val bloomFilterMap = SparkSession.active.sparkContext.broadcast(Map("ids" -> (SparkBloomFilter(bloom), fpp)))

5. Advanced Usage

- 36/68 - Copyright @ 2022 - UBS AG

The stats package bloomFilter function has severe limitations on a single field and does not allow expressions but through the

SparkBloomFilter lookup function is integrated with Quality anyway.

5.1.4 Using the Quality bloom filters

The small and big bloom functions take a single expression parameter however it can be built from any number of fields or field

types. Future versions will allow a flexible number of fields to be added to the hash function "see here" #19.

smallBloom(column, expected number of items, fpp) - an SQL aggregate function which generates a BloomFilter Array[Byte]

for use in probabilityIn or rowId:

bigBloom(column, expected number of items, fpp) - can only be run on large memory sized workers and executors and can

cover billions of rows while maintaining the FPP:

In testing the bigBloom creation over 1.5b rows on a small 4 node cluster took less than 8m to generate, using a resulting bloom

however is far easier to load and distribute and constant time for lookups. Whilst the actual big bloom itself cannot be directly

broadcast only the file location of the resulting bloom is and each node on the cluster directly loads it from the ADLS (or other

hopefully fast store for the multiple GBs).

To change the base location for blooms use the sparkSession.sparkContext.setLocalProperty("sparkutils.quality.bloom.root") to

specify the location root.

5.1.5 Expressions which take expression parameters

probabilityIn(content to lookup, bloomfilterName) - returns the fpp value of a filter lookup against the bloomFilter with

bloomFilterName in the registered BloomFilterMap, which works with the Spark stats package, small and big blooms.

// register the map for this SparkSession

registerBloomMapAndFunction(bloomFilterMap)

// lookup the result of adding column's a and b against that bloom filter for each row

otherSourceDF.withColumn("probabilityInIds", expr("probabilityIn(a + b, 'ids')"))

•

 val aggrow = orig.select(expr(s"smallBloom(uuid, $numRows, 0.01)")).head()

 val thebytes = aggrow.getAs[Bytes](0)

 val bf = bloomLookup(thebytes)

 val fpp = 0.99

 val blooms: BloomFilterMap = Map("ids" -> (bf, fpp))

•

// via the expression

val interim = df.selectExpr(s"bigBloom($bloomOn, $expectedSize, $fpp, '$bloomId')").head.getAs[Array[Byte]](0)

val bloom = com.sparkutils.quality.impl.bloom.parquet.BucketedFiles.deserialize(interim)

bloom.cleanupOthers()

bloom

val blooms: BloomFilterMap = Map("ids" -> (bloomLookup(bloom), fpp))

// via the utility function, defaults to 0.01 fpp

val bloom = bloomFrom(df, "id", expectedsize)

val blooms: BloomFilterMap = Map("ids" -> (bloomLookup(bloom), 1 - bloom.fpp))

•

Last update: June 2, 2023 18:50:52

Created: June 2, 2023 18:50:52

5.1.4 Using the Quality bloom filters

- 37/68 - Copyright @ 2022 - UBS AG

https://github.com/sparkutils/quality/issues/19

5.2 Map Functions

A typical use case for processing DQ rules is that of cached value processing, reference data lookups or industry code checks etc.

Quality's map functions reproduce the result of joining datasets but guarantees in memory operation only once they are loaded,

no merges or joins required. However for larger data lookups either Bloom Filters should be preferred or simply use joins.

Similarly, for cases involving more logic than a simple equality check you must use joins or starting in 3.4 (DBR 12.2) scalar sub

queries.

5.2.1 Building the Lookup Maps

In order to lookup values in the maps Quality requires a map of map id's to the actual maps.

In the countryCode map lookup case we are creating a map from country to a structure (funnycheck, ccy), whereas the ccyRate

is a simple lookup between ccy and it's rate at point of loading.

Map creation is not lazy and is forced at time of calling the registerMap… function, for streaming jobs this may be unacceptable.

Prefer to use new map id's and merge old sets if you need to guarantee repeated calls to registerMapLookupsAndFunctions are

working with up to date data.

It's possible to have multiple fields used as the key, where all must match, just use struct in the same way as the value example

above.

Repeated calls and streaming use cases have not been thoroughly tested, the Spark distribution method guarantees an object can be

broadcast but no merging is automatically possible, users would be required to code this by hand.

5.2.2 Expressions which take expression parameters

mapLookup('map name', x) - looks up x against the map specified in map name, full type transparency from the underlying map

values are supported including deeply nested structures

mapContains('map name', x) - returns true or false if an item is present as a key in the map

// create a map from ID to a MapCreator type with the dataframe and underlying

// columns, including returning structures / maps etc.

val lookups = mapLookupsFromDFs(Map(

 "countryCode" -> (() => {

 val df = countryCodeCCY.toDF("country", "funnycheck", "ccy")

 (df, new Column("country"), functions.expr("struct(funnycheck, ccy)"))

 }),

 "ccyRate" -> (() => {

 val df = ccyRate.toDF("ccy", "rate")

 (df, new Column("ccy"), new Column("rate"))

 })

))

registerMapLookupsAndFunction(lookups)

Note

•

// show the map of data 'country' field against country code and get back the currency

df.select(col("*"), expr("mapLookup('countryCode', country).ccy")).show()

•

Last update: June 2, 2023 18:50:52

Created: June 2, 2023 18:50:52

5.2 Map Functions

- 38/68 - Copyright @ 2022 - UBS AG

5.3 Aggregation Functions

Quality adds a number of aggregation primitives to allow building accross dataset functionality similar to Deequ and others but

philisophically staying true to the customisation approach used throughout the library.

At it's core all aggregations are formed using any number of aggExpr columns:

aggExpr(filter, lambda sum, lambda result) - allows filter expressions to be used to build up aggregated BIGINT (long) results

with lambda functions, leveraging simple lambda functions (note count is currently only BIGINT / LongType):

The filter parameter lets you select rows you care about to aggregate, but does not stop you aggregating different filters in

different columns and still process all columns in a single pass. The sum function itself does the aggregation and finally the result

function yields the last calculated result. Both of these functions operate on MAPs of any key and value type.

Spark lambda functions are incompatible with aggregation wrt. type inference which requires that the type is specified to

aggExpr as an optional default for any type other than bigint.

5.3.1 Aggregation Lambda Functions

sumWith(lambda entry -> entry) - processes for each matched row the lambda with the given ddl type which defaults to

LongType

resultsWith(lambda (sum, count) -> ex) - process results lambda with sum and count types passed in.

inc([expr]) - increments the current sum either by default 1 or by expr using type LongType

meanF() - simple mean on the results, expecting sum and count type Long:

mapWith(keyExpr, x) - uses a map to group via keyExpr and apply x to each element:

returnSum() - just returns the sum and ignores the count param, expands to resultsWith((sum, count) -> sum)

5.3.2 What about my pre 0.7.1 aggExpr functions using ddl type parameters?

Prior to 0.7.1 functions such as sumWith, mapWith, returnSum and returnWith each had their own ddl parameters.

0.7.1 has moved this to the optional first parameter of aggExpr itself, this both reduces duplication and is less error-prone

(stopping different sum types in both sum and result).

The syntax is backwards compatible however (with the exception of decimal handling), whilst the 'evaluate' (e.g. returnSum,

returnWith) ddl type parameters are ignored the 'sum' type parameter is used for the whole of aggExpr's 'sum type'.

If you are using the deprecated sumWith('dll type', ..) and get differing types issues move the ddl to the first param of aggExpr.

•

// generates with an long id column from 1 to 20

val df = sparkSession.range(1, 20)

// filter odd numbers, add the them together with sumWith lambda for the

// sum, then using resultsWith lambda variables divide them by the count

// of filtered rows

val res = df.select(expr("aggExpr(id % 2 > 0, sumWith(sum -> sum + id),

 resultsWith((sum, count) -> sum / count))").as("aggExpr"))

res.show() // will show aggExpr with 10.0 as a result,

 // sum + count would show 110..

•

•

•

•

// generates with an long id column from 1 to 20

val df = sparkSession.range(1, 20)

// filter odd numbers, add the them together with inc lambda for the sum, then using meanF expression to divide them by the count of filtered rows

val res = df.select(expr("aggExpr(id % 2 > 0, inc(id), meanF())").as("aggExpr"))

res.show() // will show aggExpr with 10.0 as a result, sum + count would show 110..

•

// a counting example expr - group by and count distinct equivalent

expr("aggExpr('MAP<STRING, LONG>', 1 > 0, mapWith(date || ', ' || product, entry -> entry + 1), resultsWith((sum, count) -> sum))").as("mapCountExpr")

// a summing example expr with embedded if's in the summing lambda for added fun

expr("aggExpr('MAP<STRING, DOUBLE>', 1 > 0, mapWith(date || ', ' || product, entry -> entry + IF(ccy='CHF', value, value * ccyrate)),

returnSum())").as("mapSumExpr")

•

5.3 Aggregation Functions

- 39/68 - Copyright @ 2022 - UBS AG

5.3.3 I get a strange error mentioning casts and type incompatiblity - what do?

In order to support the simplified single DDL parameter there are a number of Spark Expression tree re-writes taking place to

'inject' the right type. These re-writes depend on a fixed format, this may change between Spark runtimes but they may also not

work beyond the use cases they are tested against (see AggregatesTest.scala for the cases).

Spark creates different plans and Expression trees from the simplified vs. the pre 0.7.1 versions, this could lead to unexpected

re-write issues.

If an sql was working pre 0.7.1 with the deprecated syntax but fails with the simplified or indeed you simply wish to test out if

the previous syntax would have worked you can supply 'NO_REWRITE' for the first parameter of aggExpr (instead of DDL) in

addition to supplying the other two DDL's directly. The ability to provide types is present for inc, meanF, returnSum and

returnWith as before.

inc('DDL', expression) does not work with NO_REWRITE, as such it throws an exception telling you to use the default approach. You

can use an attribute directly with NO_REWRITE just not expressions

5.3.4 Type Lookup and Monoidal Merging

This section is very advanced but may be needed in a deeply nested type is to be aggregated.

Type Lookup

aggExpr, mapWith, sumWith and returnSum all rely on type lookup. The implementation uses sparks in-built DDL parsing to get

types, but can be extended by supplying a custom function when registering functions e.g.:

Monoidal Merging

Unlike type lookup custom merging could well be required for special types. Aggregation (as well as MapMerging and

MapTransform) require a Zero value the defaultZero function can be extended or overwritten and passed into registerFunctions

as per parseTypes. The defaultAdd function uses itself with an extension function parameter in order to supply map value

monoidal associative add.

This works great for Maps and default numeric types but it requires custom monoidal 'add' functions to be provided for merging

complex types.

Whilst zero returns a value to use as zero you may need to recurse for nested structures of zero, add requires defining Expressions

and takes a left and right Expression to perform it:

This is an area of functionality you should avoid unless needed as it often requires deep knowledge of Spark internals. There be

dragons.

Note

registerQualityFunctions(parseTypes = (str: String) => defaultParseTypes(str).orElse(logic goes here) /* Option[DataType] */)

Note

DataType => Option[(Expression, Expression) => Expression]

Warning

Last update: June 2, 2023 18:50:52

Created: June 2, 2023 18:50:52

5.3.3 I get a strange error mentioning casts and type incompatiblity - what do?

- 40/68 - Copyright @ 2022 - UBS AG

https://github.com/sparkutils/quality/blob/main/src/test/scala/com/sparkutils/qualityTests/AggregatesTest.scala

5.4 User Defined Functions

Users may register Lambda Functions using the sql lambda syntax:

they may be then called in rules (or within any SQL expressions), in this case value and ccyrate from the data frame are provided

to the function as parameters theValue and ccy:

The function parameter and return types are derived during the analysis phase, this may lead to errors if types do not match the

expressions upon an action only, such as writing or calling show.

Whilst you are free to add lambdas when not using a RuleSuite the library will not ensure that only functions registered as part of a

RuleSuite are used in rules, such hygiene is necessarily left to the user.

LambdaFunctions may have any number of parameters e.g. given a greaterThan lambda:

you would be able to call it with two expressions

Single argument lambdas should not use brackets around the parameters and zero argument lambdas use no input or ->. In all

cases the lambda can use the attributes from the surrounding dataframe - it's effectively global, you cannot use variables from

surrounding / calling lambdas.

Bizarrely this causes the parser to fail on 2.4 only, no more recent version suffers this. Same goes for left or right as names.

5.4.1 What about default parameter or different length parameter length Lambdas?

To define multiple parameter length lambdas just define new lambdas with the same name but different argument lengths. You

can freely call the same lambda name with different parameters e.g.:

5.4.2 Higher Order Functions

As Lambda's in Spark aren't first class citizens you can neither partially apply them (fill in parameters to derive new lambdas)

nor pass them into a lambda.

val rule = LambdaFunction("multValCCY", "(theValue, ccy) -> theValue * ccy", Id(1,2))

registerLambdaFunctions(Seq(rule))

val ndf = df.withColumn("newcalc", expr("multValCCY(value, ccyrate)"))

Note

 (param1, param2) -> param1 > param2

 greaterThan(col1, col2)

Don't use 'current'… as a lambda variable name on 2.4

val rule = LambdaFunction("multValCCY", "multValCCY(value, ccyrate)", Id(1,2))

val rule1 = LambdaFunction("multValCCY", "theValue -> multValCCY(theValue, ccyrate)", Id(2,2))

val rule2 = LambdaFunction("multValCCY", "(theValue, ccy) -> theValue * ccy", Id(3,2))

registerLambdaFunctions(Seq(rule, rule1, rule2))

// all of these should work

df.withColumn("newcalc", expr("multValCCY()"))

df.withColumn("newcalc", expr("multValCCY(value)"))

df.withColumn("newcalc", expr("multValCCY(value, ccyrate)"))

5.4 User Defined Functions

- 41/68 - Copyright @ 2022 - UBS AG

In 0.7.1 Quality experimentally adds three new concepts to the mix:

Placeholders - _() - which represents a value which still needs to be filled (partial application)

Application - callFun() - which, in a lambda, allows you to apply a function parameter

Lambda Extraction - _lambda_() - which allows Lambdas to be used with existing Spark HigherOrderFunctions (like aggregate)

Unfortunately the last piece of that puzzle of returning a higher order function isn't currently possible.

Putting together 1 and 3 (straight out of the test suite):

In the above example you can see type's being specified to the placeholder function, this is needed because, similar to aggExpr,

Spark can't know the types until after they are evaluated and resolved. This does have the benefit of keeping the types at the

partial application site. The default placeholder type is Long / Bigint.

The lambda function extracts a fully resolved underlying Spark LambdaFunction, which means the types must be correct as it is

provided to the function (use the placeholder function to specify types). Similarly, you use the lambda function to extract the

Spark LambdaFunction from a user provided parameter (as seen in the hof example).

The aggregate function only accepts two parameters for its accumulator, but in the plus3 example we've 'injected' in a third.

Partially applying the plus3 with the value 5 in it's "c" position leaves the two arguments as new function. Quality ensures the

necessary transformations are done before it hits the aggregate expression.

Great, but can I use it with aggExpr? Yep:

allows you to define the myinc and myretsum elsewhere, you don't need to use the lambda function with aggExpr.

What about application? Using callFun:

the first parameter must be the lambda variable referring to your function followed by the necessary parameters to pass in. Func

in this case has a single parameter but of course it could have started with 5 and had 4 partially applied. Again you don't need to

use lambda to pass the functions further down the line:

Deep takes the function and simply passes it to use where the callFun exists.

Finally you can also further partially apply your lambda variables:

Here the callFun directly applies the function afterwards but you could equally pass it to other functions.

1.

2.

3.

val plus = LambdaFunction("plus", "(a, b) -> a + b", Id(1,2))

val plus3 = LambdaFunction("plus3", "(a, b, c) -> a + b + c", Id(2,2))

val hof = LambdaFunction("hof", "func -> aggregate(array(1, 2, 3), 0, _lambda_(func))", Id(3,2))

registerLambdaFunctions(Seq(plus, plus3, hof))

import sparkSession.implicits._

// attempt to dropping a reference to a function where simple lambdas are expected.

// control

assert(6 == sparkSession.sql("SELECT aggregate(array(1, 2, 3), 0, (acc, x) -> acc + x) as res").as[Int].head)

// all params would be needed with multiple aritys

assert(6 == sparkSession.sql("SELECT aggregate(array(1, 2, 3), 0, _lambda_(plus(_('int'), _('int')))) as res").as[Int].head)

// can we play with partials?

assert(21 == sparkSession.sql("SELECT aggregate(array(1, 2, 3), 0, _lambda_(plus3(_('int'), _('int'), 5))) as res").as[Int].head)

// hof'd

assert(6 == sparkSession.sql("SELECT hof(plus(_('int'), _('int'))) as res").as[Int].head)

select aggExpr('DECIMAL(38,18)', dec IS NOT NULL, myinc(_()), myretsum(_(), _())) as agg

val use = LambdaFunction("use", "(func, b) -> callFun(func, b)", Id(4,2))

val deep = LambdaFunction("deep", "(func, a, b) -> use(func, a, b)", Id(2,2))

val plus2 = LambdaFunction("plus", "(a, b) -> a + b", Id(3,2))

val plus3 = LambdaFunction("plus", "(a, b, c) -> plus(plus(a, b), c)", Id(3,2))

val papplyt = LambdaFunction("papplyt", "(func, a, b, c) -> callFun(callFun(func, _(), _(), c), a, b)", Id(2,2))

registerLambdaFunctions(Seq(plus2, plus3, papplyt))

import sparkSession.implicits._

assert(6L == sparkSession.sql("select papplyt(plus(_(), _(), _()), 1L, 2L, 3L) as res").as[Long].head)

5.4.2 Higher Order Functions

- 42/68 - Copyright @ 2022 - UBS AG

https://spark.apache.org/docs/latest/api/sql/index.html#aggregate

can then be read as partially apply func (plus with 3 arguments) parameter 3 with the lambda variable c, creating a new two

argument function. Then call that function with the a and b parameters. Useless in this case perhaps but it should be illustrative.

All that's missing is returning lambdas:

here the user function retLambda returns the plus with 3 arity applied over a and b, leaving a function of one arity to fill. The top

level callFun then applies the last argument (c).

The second test

Although behaviour has been tested with compilation and across the support DBRs it's entirely possible there are gaps in the trickery

used.

A good example of the experimental nature is the _() function, it's quite possible that is taken by Spark at a later stage.

They pattern match on List and not seq, later versions fix this. To work around this you must explicitly use lambdas for these

functions.

5.4.3 Controlling compilation - Tweaking the Quality Optimisations

Normal Spark LambdaFunctions, NamedLambdaVariable and HigherOrderFunctions aren't compiled, this is - in part - due to the

nature of having to thread the lambda variables across the Expression tree and calling bind.

At the time of codegen bind has already been called however so the code is free to create a new tree just for compilation. Quality

makes use of this and replaces all NamedLambdaVariables expressions with a simple variable in the generated code.

NamedLambdaVariables also use AtomicReferences, which was introduced to avoid a tree manipulation task - see here for the

code introduction. AtomicReferences are slower for both writes and reads of non-contended variables. As such Quality does away

with this in its compilation, the exprId is sufficient to track the actual id.

Quality only attempts to replace it's own FunN and reverts to using NamedLambdaVariables if it encounters any other

HigherOrderFunction. Where it can replace it uses NamedLambdaVariableCodeGen with an ExprId specific code snippet.

You can customise this logic via implementing:

callFun(callFun(func, _(), _(), c), a, b)

val plus2 = LambdaFunction("plus", "(a, b) -> a + b", Id(3,2))

val plus3 = LambdaFunction("plus", "(a, b, c) -> plus(plus(a, b), c)", Id(3,2))

val retLambda = LambdaFunction("retLambda", "(a, b) -> plus(a, b, _())", Id(2,2))

registerLambdaFunctions(Seq(plus2, plus3, retLambda))

import sparkSession.implicits._

assert(6L == { val sql = sparkSession.sql("select callFun(retLambda(1L, 2L), 3L) as res")

 sql.as[Long].head})

It is experimental

lambda drop in call arguments to transform_values and transform_keys don't work on 3.0 and 3.1.2/3

 trait LambdaCompilationHandler {

 /**

 *

 * @param expr

 * @return empty if the expression should be transformed (i.e. there is a custom solution for it). Otherwise return the full set of NamedLambdaVariables

found

 */

 def shouldTransform(expr: Expression): Seq[NamedLambdaVariable]

 /**

 * Transform the expression using the scope of replaceable named lambda variable expression

 * @param expr

 * @param scope

 * @return

 */

5.4.3 Controlling compilation - Tweaking the Quality Optimisations

- 43/68 - Copyright @ 2022 - UBS AG

https://github.com/apache/spark/pull/21954

and supplying it via the environment variable, System.property or via sparkSession.sparkContext.setLocalProperty

quality.lambdaHandlers using this format:

where name is either a fully qualified class name of a HigherOrderFunction or of a lambda (FunN) function.

The default org.apache.spark.sql.qualityFunctions.DoCodegenFallbackHandler allows you to disable any optimisation for a

HigherOrderFunction. It can be used to disable all FunN optimisations with:

Alternatively if you have a hotspot with any inbuilt HoF such as array_transform, filter or transform_values you could replace the

implementation for compilation with your own transformation. e.g.:

Why do all this?

Speed, it's up to 40% faster. LambdaRowPerfTest, in the test suite, generates an increasing number of lambdas and only runs

over 10k rows but still sees clear benefits e.g. (orange is compiled lambdas):

This difference is already noticeable with a small increment function in a folder:

 def transform(expr: Expression, scope: Map[ExprId, NamedLambdaVariableCodeGen]): Expression

 }

 name=className

-Dquality.lambdaHandlers=org.apache.spark.sql.qualityFunctions.FunN=org.apache.spark.sql.qualityFunctions.DoCodegenFallbackHandler

-Dquality.lambdaHandlers=org.apache.spark.sql.catalyst.expressions.TransformValues=org.mine.SuperfastTransformValues

thecurrent -> updateField(thecurrent, 'thecount', thecurrent.thecount + 1)

5.4.3 Controlling compilation - Tweaking the Quality Optimisations

- 44/68 - Copyright @ 2022 - UBS AG

The difference is typically higher with nested lambdas. Should your compilation time exceed the execution time you may wish to

disable compilation via the fallback handler.

Last update: June 2, 2023 18:50:52

Created: June 2, 2023 18:50:52

5.4.3 Controlling compilation - Tweaking the Quality Optimisations

- 45/68 - Copyright @ 2022 - UBS AG

5.5 PRNG Functions

The existing Spark rand function has a few of limitations:

It generates doubles

Has a fixed implementation

Only provides reseeding on each new parition ignoring splittable / jumpable algorithms

The Quality psuedorandom generators produce either 128bit values (two longs) or a configurable number of bytes and, as a

result, do not suffer precision issues, they also leverage RandomSource implementations allowing users to choose the algorithm

used.

In addition, by leveraging .isJumpable and the resulting jump function the Quality prng function can benefit from the

implementations own approach to managing overalapping intervals across the cluster.

5.5.1 RNG Expressions

rngBytes([number of bytes to fill - defaults to 16], [RandomSource RNG Impl - defaults to 'XO_RO_SHI_RO_128_PP'], [seed -

defaults to 0]) - Uses commons rng to create byte arrays, implementations can be plugged in, when seed is 0 the RNG's

default seed generator is used. Note when a given RNG isJumpable then it will use jumping for each partition where possible

both improving speed and statistical results.

rng([RandomSource RNG Impl - defaults to 'XO_RO_SHI_RO_128_PP'], [seed - defaults to 0]) - Uses commons rng to create

byte arrays, implementations can be plugged in, when seed is 0 the RNG's default seed generator is used. Note when a given

RNG isJumpable then it will use jumping for each partition where possible both improving speed and statistical results.

rngUUID(expr) - processes expr with either byte arrays or two longs into a UUID string, it's counterpart longPairFromUUID

generates two longs

•

•

•

•

•

•

Last update: June 2, 2023 18:50:52

Created: June 2, 2023 18:50:52

5.5 PRNG Functions

- 46/68 - Copyright @ 2022 - UBS AG

https://commons.apache.org/proper/commons-rng/commons-rng-simple/apidocs/org/apache/commons/rng/simple/RandomSource.html
https://commons.apache.org/proper/commons-rng/commons-rng-client-api/apidocs/org/apache/commons/rng/JumpableUniformRandomProvider.html
https://sparkutils.github.io/quality/0.0.2/sqlfunctions/#long_pair_from_uuid

5.6 Row ID Functions

Row ID functions are at least 160bit, made of a lower base id and two longs. There are 4 distinct implementations:

Random Number, a 128bit payload based on XO_RO_SHI_RO_128_PP

Field Based, 128bit MD5 payload based on fields e.g. for DataVault style approaches

Provided, an Opaque ID payload, typically 128bit, provided by some upstream system fields (MD5 is not used under the hood)

Guaranteed Unique, 160bit ID based on Twitters snowflake IDs at Spark scale - requires MAC addresses to be stable and unique on

a driver

These IDs use the "base" field to provide extensibility but comparisons must include all three fields (or more longs should they be

added).

From a performance perspective you should transform the column to make the structure into top-level fields via

rngID('prefix') - generates a Random 128bit number with each column name prefixed for easy extraction

uniqueID('prefix') - generates a unique 160bit ID with each column name prefixed for easy extraction

fieldBasedID('prefix', 'messagedigest', exp1, exp2, *) - generates a digest based e.g. 'MD5' identifier based on an expression

list

providedID('prefix', longArrayBasedExpression) - generates a providedID based on supplied array of two longs expression

murmur3ID('prefix', exp1, exp2, *) - generates and ID using hashes based on a version of murmur3 - not cryptographically

secure but fast

idEqual('left_prefix', 'right_prefix') - (SQL only) tests the two top level field IDs by adding the prefixes, note this does allow

predicate push-down / pruning etc. (NB further versions may be added when 160bit is exceeded)

The algorithm you chose to use for generating Ids will change the length of underlying longs, idEqual cannot be used on different

lengths but you can easily replace this with a lambda of the correct length.

The fieldBasedID functions have a family of alternatives for MessageDigest, ZA based hashes and Guava based Hashers. See SQL

Functions and look for the Hash and ID tags.

fieldBasedID with MD5 - Seems far slower than other approaches

It's definitely slower than either uniqueId or rngID. If your use case allows it, consider murmur3ID if this is sufficient, it's slightly

faster as is the XXH3 za hash. MD5 was chosen based on the ubiquity of implementations including on backends (e.g. allowing

datavault style approaches).

Guaranteed Unique ID - How?

In order to lock down a globally (within a Spark using routable IP address space) ID you need to make sure a given machine,

point in time and partition (thread) is unique.

1.

2.

3.

4.

selectExpr("*","myIDField.*").drop("myIDField")

•

•

•

•

•

•

Id's can be 96-bit or larger multiples of 64

There are many different hash impls

5.6 Row ID Functions

- 47/68 - Copyright @ 2022 - UBS AG

Your networking / vendor setup should guarantee the machines MAC Address is unique for your Spark Driver, Spark guarantees

that the partition id, although re-usable, does not get re-used within a Spark cluster and for a given ms since an epoch we can

lock down a range of row numbers. This leaves the following storage model:

When Spark starts a new partition the uniqueID expression resets the timestamp and partition and each row evaluates the rowid.

When 32bits of rowid would be hit the timestamp is reset and the count resets to 0 allowing over a billion rows per ms.

This approach is faster than rngID but also means rows written to the same partitions have statistically incrementing id's

allowing Parquet statistical ranges to be used for all three values in predicate pushdowns.

gantt

 dateFormat YYYY-MM-DD

axisFormat %j

 title Bit Layout

todayMarker off

 section First Int

 Unique ID Type and Reserved Space :active, start, 2021-01-01, 8d

 First 3 Bytes of MAC : startmac, after start, 24d

 section First Long

 Last 3 Bytes of MAC :endmac, after startmac, 24d

 Spark Partition :partition, after endmac, 32d

 First 8 bits of Timestamp :starttimestamp, after partition, 8d

section Second Long

Rest of Timestamp :done, endtimestamp, after starttimestamp, 33d

Row number in Partition :rowid, after endtimestamp, 31d

Last update: June 2, 2023 18:50:52

Created: June 2, 2023 18:50:52

5.6 Row ID Functions

- 48/68 - Copyright @ 2022 - UBS AG

5.7 QualityRules

5.7.1 Engine

Quality provides a basic rule engine for data quality rules the output of each rule however is always translated to RuleResult,

encoded and persisted for audit reasons.

The ruleEngineRunner function however allows you to take an action based on the passing of a rule and, via salience, choose the

most appropriate output for a given row.

You can understand QualityRules as a large scale auditable SQL case statement with "when" being the trigger rule and the

"then" as the output expression.

RuleSuites are built per the normal DQ rules however a RuleResultProcessor is supplied:

The ruleEngineRunner takes a DataType parameter that must describe the type of the result column type. An additional

salientRule column is available that packs three the Id's that represent the ruleId chosen by salience. If this is null then no rule

was triggered and the output column will also be null (verifiable via debug mode), if however there is an entry but the output is

null then this signifies that the output expression produced a null.

The salientRule column may be pulled apart down to the id number and versions via the unpack expression or unpackIdTriple to

unpack the lot in one go. If you are using frameless encoders these longs can be converted to a triple of Id's.

The salience parameter to the RunOnPassProcessor is used to ensure the lowest value is returned for a ruleSuite. It is the

responsibility of the rule configuration to ensure there can only be one output.

All of the existing functionality, lambadas etc. can be used to customise the results and, as per the normal DQ processing, is run

in-process across the clusters when the spark action is taken (like writing the dataframe to disk).

Serializing

The serializing approach uses the same functions as normal DQ RuleSuites, the only difference is you should use toDS and

provide the two additional ruleEngine parameters when reading from a DF:

 val ruleResultProcessor =

 RunOnPassProcessor(salience, Id(outputId, outputVersion), RuleLogicUtils.expr("array(account_row('from', account), account_row('to',

'other_account1'))")))

 val rule = Rule(Id(id, version), expressionRule, ruleResultProcessor)

 val ruleSuite = RuleSuite(Id(ruleSuiteId, ruleSuiteVersion), Seq(

 RuleSet(Id(ruleSetId, ruleSetVersion), Seq(rule)

)))

 val rer = ruleEngineRunner(ruleSuite,

 DataType.fromDDL("ARRAY<STRUCT<`transfer_type`: STRING, `account`: STRING>>"))

 val testDataDF = ...

 val outdf = testDataDF.withColumn("together", rer).selectExpr("*", "together.result")

 val withoutLambdasAndOutputExpressions = readRulesFromDF(rulesDF,

 col("ruleSuiteId"),

 col("ruleSuiteVersion"),

 col("ruleSetId"),

 col("ruleSetVersion"),

 col("ruleId"),

 col("ruleVersion"),

 col("ruleExpr"),

 col("ruleEngineSalience"),

 col("ruleEngineId"),

 col("ruleEngineVersion")

)

 val lambdas = ...

 val outputExpressions = readOutputExpressionsFromDF(so.toDF(),

 col("ruleExpr"),

 col("functionId"),

 col("functionVersion"),

 col("ruleSuiteId"),

 col("ruleSuiteVersion")

)

5.7 QualityRules

- 49/68 - Copyright @ 2022 - UBS AG

The ruleExpr is only run for the lowest ruleEngineSalience result of any passing ruleExpr. The missing result will contain any

output expressions specified by a rule which do not exist in the output expression dataframe based by rulesuite id, if your

rulesuite id is not present in the missing entries your RuleSuite is good to go.

The rest of the serialization functions to combine lambdas etc. work as per normal DQ rules allowing you to use lambda functions

in your QualityRules output rules as well.

The result of toDS will contain the three ruleEngine fields, you can simply drop them if they are not needed.

Debugging

The RuleResult's indicate if a rule has not triggered but in the case of multiple matching rules it can be useful to see which rules

would have been chosen.

To enable this you can add the debugMode parameter to the ruleEngineRunner:

This changes the output column 'result' field type to:

There are two cases where you may get a null result:

no rules have matched (you can verify this as you'll have no passed() rules).

your rule actually returned a null (you can verify this by putting on debug mode, you'll see a salience but no result)

flattenRuleResults

This sql function behaves the same way as per flattenResults, however there are now two structures to 'explode'. debugRules

works as expected here as well.

resolveWith

The resolveWith functionality has several issues with Spark compatibility which may lead to code failing when it looks like it should

work. Known issues:

Using filter then count will stop necessary attributes being produced for resolving, Spark optimises them out as count doesn't need

them, however the rules definitely do need some attributes to be useful.

You may not select different attributes, remove any, re-order them, or add extra attributes, this is likely to cause failure in show'ing

or write'ing

Spark is free to optimise other actions than just count, ymmv in which ones work.

resolveWith attempts to improve performance of planning for general spark operations by first using a reduced plan against the

source dataframe. The resulting Expression will have all functions and attributes resolved and is hidden from further processing

by Spark until your rules actually run.

 val (ruleMap, missing) = integrateOutputExpressions(withoutLambdasAndOutputExpressions, outputExpressions)

 val rer = ruleEngineRunner(ruleSuite,

 DataType.fromDDL("ARRAY<STRUCT<`transfer_type`: STRING, `account`: STRING>>"),

 debugMode = true)

ARRAY<STRUCT<`salience`: INTEGER, `result`: ARRAY<ORIGINGALRESULTTYPE>>

Why do I have a null

1.

2.

 val outdf = testDataDF.withColumn("together", rer).selectExpr("explode(flattenRuleResults(together)) as expl").selectExpr("expl.*")

Use with care - very experimental

1.

2.

3.

5.7.1 Engine

- 50/68 - Copyright @ 2022 - UBS AG

WHY IS THIS NEEDED?

For RuleSuites with 1000s of triggers the effort for Spark to prepare the rules is significant. In tests 1k rule with 50 field

evalutaions is already sufficient to cause a delay of over 1m for each action (show, write, count etc.) and the size of the data

being processed is not relevant.

After building the action QualityRules scale and perform as expected, but that initial costs of 1m per action is significant as it can

only be improved by higher spec drivers.

resolveWith, if it works for given use case, drastically reduces this cost, the above 1k example is a 30s evaluation up front and far

less cost for each further action.

With the rather horrible 1k rule example the clock time of running 1k rows through 1k rules with a simple show, then count and

write for actions was 6m15s on an Azure b4ms, using resolveWith brings this down to 1m30s for the same actions. Still not

blazingly fast of course, but far more tolerable and becomes suitable for smaller batch jobs.

ANY REASON WHY I SHOULDN'T TRY IT?

Not really but for production use cases where your trigger and output rules complexity is low you should prefer to not use it, it's

likely fast enough and this solution is very much experimental.

You definitely shouldn't use it when using relation or table fields in your expressions e.g. table.field this does not work (verify this

by running JoinValidationTest using evalCodeGens instead of evalCodeGensNoResolve). There be dragons. This is known to fail

on all OSS builds and OSS runtimes (up to and including 3.2.0). 10.2.dbr and 9.1.dbr actually do work running the tests in

notebooks with resolveWith and relations (the test itself is not built for this however to ensure cross compilation on the OSS

base).

forceRunnerEval

By default, QualityRules runs with an optimised wholestage codegen wherever possible. This works by breaking out the nested

structure of a RuleSuite into multiple index, salience and id arrays which are fixed for the duration of an action. Whilst this

reduces the overhead of array and temporary structure creation the compilation also unrolls the evaluation of trigger rules

allowing jit optimisations to kick in.

Using large RuleSuites, however, may cause large compilation times which are unsuitable for smaller batches, as such you can

force the interpreted path to be used by setting this parameter to true. Individual trigger and output expressions are still

compiled but the evaluation will not be.

 val testDataDF =

 val rer = ruleEngineRunner(ruleSuite,

 DataType.fromDDL(DDL), debugMode = debugMode, resolveWith = resolveWith = Some(testDataDF))

 val withRules = rer.withColumn("ruleResults", rer)

 // ... use the rules

Last update: June 2, 2023 18:50:52

Created: June 2, 2023 18:50:52

5.7.1 Engine

- 51/68 - Copyright @ 2022 - UBS AG

5.7.2 Workflow

Overview and terms

QualityRules is a matching engine which applies match/trigger rules to a Dataframe and, when these rules evaluate to passed

(i.e. they match or trigger) output sql is run.

Only one trigger rule may produce output, so salience is used as a tie-breaker, the lowest salience wins.

If you have multiple trigger rules with the same salience that both trigger the "winning" output chosen is non-deterministic, chose

your salience wisely.

An alternative way to think of this is the trigger rules are your if and the output expressions are the when, from a logic

perspective it may be helpful to think of them as output verbs - when this is true do that.

Suggested approach to QualityRules management

Keep unrelated rules in their own RuleSuites, making things easier to reason about

Make commonly used lambdas or output expressions global

Use descriptive verbs for your output expressions

Keep duplication or complexity in lambdas

Only use fields that change as parameters to those lambdas

Always start with test data you want to match against and your expected output

Run all test cases for your RuleSuite for any change, don't assume because your rule worked that others won't stop working

Use the validation and documentation functionality to document your lambdas and verify you've not made simple mistakes -

Spark errors aren't always easy to understand

This could be visualised as such:

Aim to have unique salience for tie-breaking

•

•

•

•

•

•

•

•

5.7.2 Workflow

- 52/68 - Copyright @ 2022 - UBS AG

If you are typing the same trigger rule, output expression or even lambda text repeatedly - make another lambda and consider

making it global

Don't repeat yourself

5.7.2 Workflow

- 53/68 - Copyright @ 2022 - UBS AG

Last update: June 2, 2023 18:50:52

Created: June 2, 2023 18:50:52

5.7.2 Workflow

- 54/68 - Copyright @ 2022 - UBS AG

5.8 QualityFolder

The ruleFolderRunner function uses the same data formats and structures as the ruleEngineRunner (with the exception of

RuleFolderResult) however it allows you to "fold" results over many matching rules.

In contrast to ruleEngineRunner, which uses salience to select which output expression to run, ruleFolderRunner uses salience to

order the execution of each matching output expression. To facilitate this OutputExpressions in the ruleFolderRunner must be

lambdas with one parameter.

ruleFolderRunner takes a starter Column, which is evaluated against the row and then is passed as the parameter to the

OutputExpression lambdas, in turn the result of these output lambdas is then fed in to the next matching OutputExpression and

folded over until the last is run, which is returned.

When using debugMode you get the salience and each output returned in the resulting array, as with ruleEngineRunner the

Encoder derivations for RuleFolderResult work with both T and Seq[(Int, T)] where the Int is salience.

RuleSuites are built per the normal DQ rules however a RuleResultProcessor is supplied with Lambda OutputExpressions:

You may use multiple path and expression combinations in the same call, allowing the change of multiple fields at once - this will

be faster than nesting calls to updateField.

It may be tempting to use 'current' as your lambda variable name, but this causes problems on 2.4 - every other version doesn't care.

2.4 will NPE using withResolve, this does not occur on more recent Spark versions

Spark will not NPE using withColumn but will using select(expr("*"), ruleFolderRunner(ruleSuite)). In order to thread the types

through the resolving needs an additional projection, if you must avoid withColumn (e.g for performance reasons) then you may

specify the DDL via the useType parameter.

5.8.1 Set

Although the use of lambda expressions allows you full control of your output expression it can be a bit verbose. The common use

case of defaulting is more easily expressed via the following syntax:

Only valid variable names and paths, followed by equal and valid expressions (however complex) are allowed.

 val ruleResultProcessor =

 RunOnPassProcessor(salience, Id(outputId, outputVersion),

 RuleLogicUtils.expr("thecurrent -> updateField(thecurrent, 'account', concat(thecurrent.account, '_suffix'))")))

 val rule = Rule(Id(id, version), expressionRule, ruleResultProcessor)

 val ruleSuite = RuleSuite(Id(ruleSuiteId, ruleSuiteVersion), Seq(

 RuleSet(Id(ruleSetId, ruleSetVersion), Seq(rule)

)))

 val rer = ruleFolderRunner(ruleSuite,

 struct($"transfer_type", $"account"))

 val testDataDF = ...

 val outdf = testDataDF.withColumn("together", rer).selectExpr("*", "together.result")

Don't use 'current' for a variable on 2.4

Don't use resolveWith on 2.4

Don't use select(*, ruleFolderRunner)

set(variable.path = expression to assign, variable2 = other expression, variable3 = expression using currentResult)

5.8 QualityFolder

- 55/68 - Copyright @ 2022 - UBS AG

The following two folder expressions are equivalent, indeed the set call is translated into the lambda:

The set syntax defaults the name of the lambda variable to "currentResult" and removes the odd looking quotes around the

variable names.

5.8.2 flattenFolderResults

This sql function behaves the same way as per flattenRuleResults with debugRules working as expected.

5.8.3 resolveWith

The resolveWith functionality has several issues with Spark compatibility which may lead to code failing when it looks like it should

work. Known issues:

Using filter then count will stop necessary attributes being produced for resolving, Spark optimises them out as count doesn't need

them, however the rules definitely do need some attributes to be useful.

You may not select different attributes, remove any, re-order them, or add extra attributes, this is likely to cause failure in show'ing

or write'ing

Spark is free to optimise other actions than just count, ymmv in which ones work.

resolveWith attempts to improve performance of planning for general spark operations by first using a reduced plan against the

source dataframe. The resulting Expression will have all functions and attributes resolved and is hidden from further processing

by Spark until your rules actually run.

You definitely shouldn't use it when using relation or table fields in your expressions e.g. table.field this does not work (verify this

by running JoinValidationTest using evalCodeGens instead of evalCodeGensNoResolve). There be dragons. This is known to fail

on all OSS builds and OSS runtimes (up to and including 3.2.0). 10.2.dbr and 9.1.dbr actually do work running the tests in

notebooks with resolveWith and relations (the test itself is not built for this however to ensure cross compilation on the OSS

base).

set(account = concat(currentResult.account, '_suffix'), ammount = 5)

currentResult -> updateField(currentResult, 'account', concat(currentResult.account, '_suffix'), 'ammount', 5)

 val outdf = testDataDF.withColumn("together", rer).selectExpr("explode(flattenFolderResults(together)) as expl").selectExpr("expl.result")

Use with care - very experimental

1.

2.

3.

 val testDataDF =

 val rer = ruleEngineRunner(sparkSession.sparkContext.broadcast(ruleSuite),

 DataType.fromDDL(DDL), debugMode = debugMode, resolveWith = resolveWith = Some(testDataDF))

 val withRules = rer.withColumn("ruleResults", rer)

 // ... use the rules

Last update: June 2, 2023 18:50:52

Created: June 2, 2023 18:50:52

5.8.2 flattenFolderResults

- 56/68 - Copyright @ 2022 - UBS AG

5.9 Validation

Quality provides some validation utilities that can be used as part of your rule design activity to ensure sure you aren't using

variables or functions that don't exist, or even possibly having recursive lambda calls.

It comes in two distinct flavours:

Schema Based - The schema representing your dictionary

DataFrame Based - Use an actual DataFrame to provide your dictionary

with the option of running the rules against your schema (or DataFrame) via the runnerFunction parameter.

A simpler function for just assessing known Errors against a schema are also provided:

The validation result model is as follows:

so the simple version returns any known Errors backed by case classes so you can pattern match as needed or just display as is

via the id and errorText functions.

Resolution of function names are run against the functionRegistry, as such you must register any UDF's or database functions

before calling validate.

5.9.1 What if I want to actually test the ruleSuite runs?

Given you can either use a ruleRunner or a ruleEngineRunner and set a number of parameters on those Column functions the

validate runnerFunction is as simple DataFrame => Column that allows you to tweak the output. In the case of

ruleEngineRunner you could use debug mode, try with different DDL output types etc. Use the qualityName parameter if you

want to store the output in another column. If you don't provide the runnerFunction the resulting string will be empty.

You don't actually have to provide a DataFrame, instead using just schema will generate an empty dataset to allow Spark to

resolve against. Using a DataFrame parameter will allow you to capture the output in the resulting tuples _3 String.

There are a number of overloaded validate arity functions to help solve common cases, they all delegate to the above function,

whic also returns the documentation objects for each expression in the RuleSuite via the RuleSuiteDocs object, this provides a

base for the documentation of a RuleSuite.

5.9.2 What I want to change the dataframe before I show it?

Using the transformBeforeShow parameter you can enhance, select or filter the DataFrame before showing it.

1.

2.

def validate(schema: StructType, ruleSuite: RuleSuite): Set[RuleError]

def validate(schemaOrFrame: Either[StructType, DataFrame], ruleSuite: RuleSuite, showParams: ShowParams = ShowParams(), runnerFunction: Option[DataFrame =>

Column] = None, qualityName: String = "Quality", recursiveLambdasSOEIsOk: Boolean = false, transformBeforeShow: DataFrame => DataFrame = identity):

(Set[RuleError], Set[RuleWarning], String, RuleSuiteDocs, Map[Id, ExpressionLookup])

5.9 Validation

- 57/68 - Copyright @ 2022 - UBS AG

5.9.3 Why do I get a java.lang.AbstractMethodError when validating?

The validation code also validates the sql documentation, checking documented parameters against lambda parameter names (or

indeed that you have any parameters when not a lambda).

You probably have a dependency on the Scala Compiler, due to the scala compiler requiring a different parser combinator library

this may occur due to classpath issues.

To remediate please make sure that Quality is higher up on your dependencies than the scala compiler is. If need be manually

specify the parser combinator library dependency, making sure to use the same version declared in Qualities pom.

Last update: June 2, 2023 18:50:52

Created: June 2, 2023 18:50:52

5.9.3 Why do I get a java.lang.AbstractMethodError when validating?

- 58/68 - Copyright @ 2022 - UBS AG

https://github.com/scala/scala-parser-combinators/issues/197#issuecomment-480486554

5.10 Expression Documentation

As Quality is based on sql it can be useful to document it in place, particularly with Lambda and Output expressions, but also

applies to rules and trigger rules.

The basic format follows javadocs / scaladocs approach, without *'s on each line, but is possible to define on one line:

This could also be written with newlines including markdown (if the renderer supports it):

Param's are optional and will generate a warning if the names don't match in the validate function or if params are used on a

non-lambda expression.

The return value is also optional but would apply to all expressions.

Whilst an incorrect parameter name will be flagged and warned against you won't be forced to put a comment for every

parameter.

A couple of helpful utility functions:

exist to generate docs of a ruleSuite and validation errors. The validate function returns both of these inputs. You must specify the

quality url containing the sqlfunction documentation in order to link, hrefs are not carried across mike links yet.

The sample docs and sample errors/warnings are generated from the DocMarkdownTest.

/** My Description @param name name desc @param othername othername desc @return return val*/

/**

My Description:

* bullet point

* more points

@param name name desc

@param othername othername:

* more description points

@return return val

*/

 val (errors, warnings, out, docs, expr) = validate(Left(struct), ruleSuite)

 import com.sparkutils.quality.utils.{RuleSuiteDocs, RelativeWarningsAndErrors}

 val relative = RelativeWarningsAndErrors("../sampleDocsValidation/", errors, warnings)

 val md = RuleSuiteDocs.createMarkdown(docs, ruleSuite, expr, qualityURLGOESHERE+"/sqlfunctions/", Some(relative))

 IOUtils.write(md, new FileOutputStream("./docs/advanced/sampleDocsOutput.md"))

 val emd = RuleSuiteDocs.createErrorAndWarningMarkdown(docs, ruleSuite, relative.copy(relativePath = "../sampleDocsOutput/"))

 IOUtils.write(emd, new FileOutputStream("./docs/advanced/sampleDocsValidation.md"))

Last update: June 2, 2023 18:50:52

Created: June 2, 2023 18:50:52

5.10 Expression Documentation

- 59/68 - Copyright @ 2022 - UBS AG

6. SQL Functions Documentation

6.1 _

_([ddl type], [nullable]) provides PlaceHolders for lambda functions to allow partial application, use them in place of actual

values or expressions to either change arity or allow use in _lambda_.

The default type is Long / Bigint, you will have to provide the types directly when using something else. By default the

placeholders are assumed to be nullable (i.e. true), you can use false to state the field should not be null.

6.2 _lambda_

lambda(user function) extracts the Spark LambdaFunction from a resolved user function, this must have the correct types

expected by the Spark HigherOrderFunction they are parameters for.

This allows using user defined functions and lambdas with in-built Spark HigherOrderFunctions

6.3 agg_Expr

agg_Expr([ddl sum type], filter, sum, result) aggregates on rows which match the filter expression using the sum expression to

aggregate then processes the results using the result expression.

You can run multiple agg_Expr's in a single pass select, use the first parameter to thread DDL type information through to the

sum and result functions.

6.4 as_uuid

as_uuid(lower_long, higher_long) converts two longs into a uuid, equivalent to rngUUID(longPair(lower, higher))

6.5 big_Bloom

big_Bloom(buildFrom, expectedSize, expectedFPP) creates an aggregated bloom filter using the buildFrom expression.

The blooms are stored on a shared filesystem using a generated uuid, they can scale to high numbers of items whilst keeping the

FPP (e.g. millions at 0.01 would imply 99% probability, you may have to cast to double in Spark 3.2).

buildFrom can be driven by digestToLongs or hashWith functions when using multiple fields.

Alternatives:

big_Bloom(buildFrom, expectedSize, expectedFPP, 'bloom_loc') - per above but uses a fixed string bloom_loc instead of a uuid

6.6 callFun

callFun(user function lambda variable, param1, param2, … paramN) used within a lambda function it allows calling a lambda

variable that contains a user function.

Used from the top level sql it performs a similar function expecting either a full user function or a partially applied function,

typically returned from another lambda user function.

6. SQL Functions Documentation

- 60/68 - Copyright @ 2022 - UBS AG

6.7 coalesce_If_Attributes_Missing

coalesce_If_Attributes_Missing(expr, replaceWith) substitutes expr with the replaceWith expression when expr has missing

attributes in the source dataframe. Your code must call the scala processIfAttributeMissing function before using in validate or

ruleEngineRunner/ruleRunner:

6.8 coalesce_If_Attributes_Missing_Disable

coalesce_If_Attributes_Missing_Disable(expr) substitutes expr with the DisabledRule Integer result (-2) when expr has missing

attributes in the source dataframe. Your code must call the scala processIfAttributeMissing function before using in validate or

ruleEngineRunner/ruleRunner:

6.9 comparable_Maps

comparable_Maps(struct | array | map) converts any maps in the input param into sorted arrays of a key, value struct.

This allows developers to perform sorts, distincts, group bys and union set operations with Maps, currently not supported by

Spark sql as of 3.4.

The sorting behaviour uses Sparks existing odering logic but allows for extension during the calls to the registerQualityFunctions

via the mapCompare parameter and the defaultMapCompare function.

6.10 digest_To_Longs

digest_To_Longs('digestImpl', fields*) creates an array of longs based on creating the given MessageDigest impl. A 128-bit impl

will generate two longs from it's digest

6.11 digest_To_Longs_Struct

digest_To_Longs_Struct('digestImpl', fields*) creates structure of longs with i0 to iN named fields based on creating the given

MessageDigest impl.

6.12 disabled_Rule

disabledRule() returns the DisabledRule Integer result (-2) for use in filtering and to disable rules (which may not signify a

version bump)

6.13 failed

failed() returns the Failed Integer result (0) for use in filtering

val missingAttributesAreReplacedRS = processIfAttributeMissing(rs, struct)

val (errors, _) = validate(struct, missingAttributesAreReplacedRS)

// use it missingAttributesAreReplacedRS in your dataframe..

val missingAttributesAreReplacedRS = processIfAttributeMissing(rs, struct)

val (errors, _) = validate(struct, missingAttributesAreReplacedRS)

// use it missingAttributesAreReplacedRS in your dataframe..

6.7 coalesce_If_Attributes_Missing

- 61/68 - Copyright @ 2022 - UBS AG

6.14 field_Based_ID

field_Based_ID('prefix', 'digestImpl', fields*) creates a variable bit length id by using a given MessageDigest impl over the fields,

prefix is used with the _base, _i0 and _iN fields in the resulting structure

6.15 flatten_Results

flatten_Results(dataQualityExpr) expands data quality results into a flat array

6.16 flatten_Rule_Results

flatten_Rule_Results(dataQualityExpr) expands data quality results into a structure of flattenedResults, salientRule (the one used

to create the output) and the rule result.

salientRule will be null if there was no matching rule

6.17 hash_Field_Based_ID

hash_Field_Based_ID('prefix', 'digestImpl', fields*) creates a variable bit length id by using a given Guava Hasher impl over the

fields, prefix is used with the _base, _i0 and _iN fields in the resulting structure

6.18 hash_With

hash_With('HASH', fields*) Generates a hash value (array of longs) suitable for using in blooms based on the given Guava hash

implementation.

Note based on testing the digestToLongs function for SHA256 and MD5 are faster.

Valid hashes: MURMUR3_32, MURMUR3_128, MD5, SHA-1, SHA-256, SHA-512, ADLER32, CRC32, SIPHASH24. When an

invalid HASH name is provided MURMUR3_128 will be chosen.

On Spark 3.1.2/3 open source this may get resolver errors due to a downgrade on guava version - 15.0 is used on Databricks, open

source 3.0.3 uses 16.0.1, 3.1.2 drops this to 11 and misses crc32, sipHash24 and adler32.

6.19 hash_With_Struct

per hash_With('HASH', fields*) but generates a struct with i0 to ix named longs. This structure is not suitable for blooms

6.20 id_base64

id_base64(base, i0, i1, ix) Generates a base64 encoded representation of the id, either the single struct field or the individual

parts

Alternatives:

id_base64(id_struct) Uses an id field to generate

6.21 id_Equal

id_Equal(leftPrefix, rightPrefix) takes two prefixes which will be used to match leftPrefix_base = rightPrefix_base, i0 and i1 fields.

It does not currently support more than two i's

Open source Spark 3.1.2/3 issues

6.14 field_Based_ID

- 62/68 - Copyright @ 2022 - UBS AG

6.22 id_from_base64

id_from_base64(base64) Parses the base64 string with an expected default long size of two i.e. an 160bit ID, any string which is

not of the correct size will return null

Alternatives:

id_from_base64(base64f, size) Uses a size, which must be literal, to specify the type

6.23 id_raw_type

id_raw_type(idstruct) Given a prefixed id returns the fields without their prefix

6.24 id_size

id_size(base64) Given a base64 from id_base64 returns the number of _i long fields

6.25 inc

inc() increments the current sum by 1

Alternatives:

inc(x) use an expression of type Long to increment

6.26 long_Pair

long_Pair(lower, higher) creates a structure with these lower and higher longs

6.27 long_Pair_Equal

long_Pair_Equal(leftPrefix, rightPrefix) takes two prefixes which will be used to match leftPrefix_lower = rightPrefix_lower and

leftPrefix_higher = rightPrefix_higher

6.28 long_Pair_From_UUID

long_Pair_From_UUID(expr) converts a UUID to a structure with lower and higher longs

6.29 map_Contains

map_Contains(expr, 'mapid') returns true if there is an item in the map

6.30 map_Lookup

map_Lookup(expr, 'mapid') returns either the lookup in map specified by mapid or null

6.31 meanF

meanF() simple mean on the results, expecting sum and count type Long

6.22 id_from_base64

- 63/68 - Copyright @ 2022 - UBS AG

6.32 murmur3_ID

murmur3ID('prefix', fields*) Generates a 160bit id using murmer3 hashing over input fields, prefix is used with the _base, _i0 and

_i1 fields in the resulting structure

6.33 pack_Ints

pack_Ints(lower, higher) a packaged long from two ints, used within result compression

6.34 passed

passed() returns the Passed Integer for use in filtering: 10000

6.35 prefixed_To_Long_Pair

prefixed_To_Long_Pair(field, 'prefix') converts a 128bit longpair field with the given prefix into a higher and lower long pair

without prefix.

This is suitable for converting provided id's into uuids for example via a further call to rngUUID.

6.36 print_Code

print_Code([msg], expr) prints the code generated by an expression, the value variable and the isNull variable and forwards

eval calls / type etc. to the expression.

The code is printed once per partition on the executors std. output. You will have to check each executor to find the used nodes

output. To use with unit testing on a single host you may overwrite the writer function in registerQualityFunctions, you should

however use a top level object and var to write into (or stream), printCode will not be able to write to std out properly (spark

redirects / captures stdout) or non top level objects (due to classloader / function instance issues). Testing on other hosts without

using stdout should do so to a shared file location or similar.

!!! "information" It is not compatible with every expression Aggregate expressions like aggExpr or sum etc. won't generate code

so they aren't compatible with printCode.

6.37 print_Expr

print_Expr([msg], expr) prints the expression tree via toString with an optional msg

The message is printed to the driver nodes std. output, often shown in notebooks as well. To use with unit testing you may

overwrite the writer function in registerQualityFunctions, you should however use a top level object and var to write into (or

stream).

6.38 probability

probability(expr) will translate probability rule results into a double, e.g. 1000 returns 0.01. This is useful for interpreting and

filtering on probability based results: 0 -> 10000 non-inclusive

lambda is also incompatible with printCode both wrapping a user function and the _lambda_ function. Similarly the _() placeholder function cannot be

wrapped.

Any function expecting a specific signature like aggExpr or other HigherOrderFunctions like aggregate or filter are unlikely to support wrapped arguements.

6.32 murmur3_ID

- 64/68 - Copyright @ 2022 - UBS AG

6.39 probability_In

probability_In(expr, 'bloomid') returns the probability of the expr being in the bloomfilter specified by bloomid.

This function either returns 0.0, where it is definitely not present, or the original FPP where it may be present.

You may use digestToLongs or hashWith as appropriate to use multiple columns safely.

6.40 provided_ID

provided_ID('prefix', existingLongs) creates an id for an existing array of longs, prefix is used with the _base, _i0 and _iN fields in

the resulting structure

6.41 results_With

results_With(x) process results lambda x (e.g. (sum, count) -> sum) that takes sum from the aggregate, count from the number

of rows counted. Defaults both the sumtype and counttype as LongType

Alternatives:

results_With([sum ddl type], x) Use the given ddl type for the sum type e.g. 'MAP<STRING, DOUBLE>'

results_With([sum ddl type], [result ddl type], x) Use the given ddl type for the sum and result types

6.42 return_Sum

return_Sum(sum type ddl) just returns the sum and ignores the count param, expands to resultsWith([sum ddl_type], (sum,

count) -> sum)

6.43 reverse_Comparable_Maps

reverses a call to comparableMaps

6.44 rng

rng() Generates a 128bit random id using XO_RO_SHI_RO_128_PP, encoded as a lower and higher long pair

Alternatives:

rng('algorithm') Uses Commons RNG RandomSource to implement the RNG

rng('algorithm', seedL) Uses Commons RNG RandomSource to implement the RNG with a long seed

6.45 rng_Bytes

rng_Bytes() Generates a 128bit random id using XO_RO_SHI_RO_128_PP, encoded as a byte array

Alternatives:

rng_Bytes('algorithm') Uses Commons RNG RandomSource to implement the RNG

rng_Bytes('algorithm', seedL) Uses Commons RNG RandomSource to implement the RNG with a long seed

rng_Bytes('algorithm', seedL, byteCount) Uses Commons RNG RandomSource to implement the RNG with a long seed, with a

specific byte length integer (e.g. 16 is two longs, 8 is integer)

6.39 probability_In

- 65/68 - Copyright @ 2022 - UBS AG

6.46 rng_ID

rng_ID('prefix') Generates a 160bit random id using XO_RO_SHI_RO_128_PP, prefix is used with the _base, _i0 and _i1 fields in

the resulting structure

Alternatives:

rng_Id('prefix', 'algorithm') Uses Commons RNG RandomSource to implement the RNG, using other algorithm's may generate

more long _iN fields

rng_Id('prefix', 'algorithm', seedL) Uses Commons RNG RandomSource to implement the RNG with a long seed, using other

algorithm's may generate more long _iN fields

6.47 rng_UUID

rng_UUID(expr) takes either a structure with lower and higher longs or a 128bit binary type and converts to a string uuid

6.48 rule_Suite_Result_Details

rule_Suite_Result_Details(dq) strips the overallResult from the dataquality results, suitable for keeping overall result as a top-

level field with associated performance improvements

6.49 safer_Long_Pair

deprecated use unique_Id - safer_Long_Pair(expr, 'bloomid') Prefer to use unique_ID, this 'safer' rng repeatedly calls the expr rng

function until there is no matching entry in the bloom id. It returns lower and higher longs.

6.50 small_Bloom

small_Bloom(buildFrom, expectedSize, expectedFPP) creates a simply bytearray bloom filter using the expected size and fpp -

0.01 is 99%, you may have to cast to double in Spark 3.2. buildFrom can be driven by digestToLongs or hashWith functions when

using multiple fields.

6.51 soft_Fail

soft_Fail(ruleexpr) will treat any rule failure (e.g. failed()) as returning softFailed()

6.52 soft_Failed

soft_Failed() returns the SoftFailed Integer result (-1) for use in filtering

6.53 sum_With

sum_With(x) adds expression x for each row processed in an aggExpr with a default of LongType

Alternatives:

sum_With([ddl type], x) Use the given ddl type e.g. 'MAP<STRING, DOUBLE>'

6.54 unique_ID

uniqueID('prefix') Generates a 160bit guaranteed unique id (requires MAC address uniqueness) with contiguous higher values

within a partition and overflow with timestamp ms., prefix is used with the _base, _i0 and _i1 fields in the resulting structure

6.46 rng_ID

- 66/68 - Copyright @ 2022 - UBS AG

6.55 unpack

unpack(expr) takes a packed rule long and unpacks it to a .id and .version structure

6.56 unpack_Id_Triple

unpack_Id_Triple(expr) takes a packed rule triple of longs (ruleSuiteId, ruleSetId and ruleId) and unpacks it to (ruleSuiteId,

ruleSuiteVersion, ruleSetId, ruleSetVersion, ruleId, ruleVersion)

6.57 update_Field

update_Field(structure_expr, 'field.subfield', replaceWith, 'fieldN', replaceWithN) processes structures allowing you to replace

sub items (think lens in functional programming) using the structure fields path name.

This is wrapped an almost verbatim version of Make Structs Easier' AddFields

6.58 za_Field_Based_ID

za_Field_Based_ID('prefix', 'digestImpl', fields*) creates a 64bit id (96bit including header) by using a given Zero Allocation impl

over the fields, prefix is used with the _base and _i0 fields in the resulting structure.

Prefer using the zaLongsFieldBasedID for less collisions

6.59 za_Hash_Longs_With

za_Hash_Longs_With('HASH', fields*) generates a multi length long array but with a zero allocation implementation. This

structure is suitable for blooms, the default XXH3 algorithm is the 128bit version of that used by the internal bigBloom

implementation.

Available HASH functions are MURMUR3_128, XXH3

6.60 za_Hash_Longs_With_Struct

similar to za_Hash_Longs_With('HASH', fields*) but generates an ID relevant multi length long struct, which is not suitable for

blooms

6.61 za_Hash_With

za_Hash_With('HASH', fields*) generates a single length long array always with 64 bits but with a zero allocation

implementation. This structure is suitable for blooms, the default XX algorithm is used by the internal bigBloom implementation.

Available HASH functions are MURMUR3_64, CITY_1_1, FARMNA, FARMOU, METRO, WY_V3, XX

6.62 za_Hash_With_Struct

similar to za_Hash_With('HASH', fields*) but generates an ID relevant multi length long struct (of one long), which is not suitable

for blooms.

Prefer zaHashLongsWithStruct for reduced collisions with either the MURMUR3_128 or XXH3 versions of hashes

6.55 unpack

- 67/68 - Copyright @ 2022 - UBS AG

https://raw.githubusercontent.com/fqaiser94/mse/master/src/main/scala/org/apache/spark/sql/catalyst/expressions/AddFields.scala
https://github.com/OpenHFT/Zero-Allocation-Hashing
https://github.com/OpenHFT/Zero-Allocation-Hashing
https://github.com/OpenHFT/Zero-Allocation-Hashing

6.63 za_Longs_Field_Based_ID

za_Longs_Field_Based_ID('prefix', 'digestImpl', fields*) creates a variable length id by using a given Zero Allocation impl over the

fields, prefix is used with the _base, _i0 and _iN fields in the resulting structure. Murmur3_128 is faster than on the Guava

implementation.

Last update: June 2, 2023 18:50:52

Created: June 2, 2023 18:50:52

6.63 za_Longs_Field_Based_ID

- 68/68 - Copyright @ 2022 - UBS AG

	Quality
	1. Quality - 0.0.2
	1.1 Run complex data quality rules using simple SQL in a batch or streaming Spark application at scale.
	1.2 Enhanced Spark Functionality

	2. Getting Started
	2.1 Building and Setting Up
	2.1.1 Building The Library
	Building via commandline

	2.1.2 Running the tests
	2.1.3 Build tool dependencies
	Developing for a Databricks Runtime

	2.1.4 Using the SQL functions on Spark Thrift (Hive) servers
	Query Optimisations
	Configuring on Databricks runtimes

	2.1.5 2.4 Support requires 2.4.6 or Janino 3.0.16

	2.2 Defining & Running your first RuleSuite
	2.2.1 withColumn is BAD - how else can I add columns?
	2.2.2 Filtering the Results

	2.3 Those are some Quality flavours
	2.3.1 Quality / QualityData - ruleRunner
	2.3.2 QualityRules - ruleEngineRunner
	2.3.3 QualityFolder - ruleFolderRunner

	2.4 Key SQL Functions to use in your Rules
	2.4.1 Expressions with constants
	2.4.2 Expressions which take expression parameters

	2.5 Reading & Writing RuleSuites
	2.5.1 Reading & Writing RuleSuites
	2.5.2 Versioned rule datasets

	2.6 Running Quality on Databricks
	2.6.1 Running 3.1 builds on Databricks Runtime 9.1 LTS
	2.6.2 Running 3.2.1 builds on Databricks Runtime 10.4
	2.6.3 Running 3.3.0 builds on Databricks Runtime 11.3 LTS
	2.6.4 Running on Databricks Runtime 12.2 LTS
	2.6.5 Running on Databricks Runtime 13.0
	2.6.6 Running on Databricks Runtime 13.1
	2.6.7 Testing out Quality via Notebooks

	3. About
	3.1 History
	3.1.1 Why Quality?
	3.1.2 Gaps in existing Spark Offerings
	3.1.3 Resulting Solution Space
	3.1.4 How did Rules and Folder come about?

	3.2 Performance Choices
	3.2.1 How should rules be evaluated?
	Catalyst Expression Performance

	3.2.2 How should rule results be stored? - JSON vs Structures
	UDF Created Structures
	Expression Created Structures
	Filtering Costs
	Structure Model - storage costs

	3.3 Changelog
	0.0.2 2nd June, 2023
	0.0.1 8th March, 2023
	the Quality exploration starts 25th April, 2020

	4. Model
	4.1 Rule Model
	4.1.1 Rules
	4.1.2 Rule Results

	4.2 Storage Model
	4.2.1 Where have all the VersionIds and RuleResults gone?

	4.3 Meta Rulesets?

	5. Advanced Usage
	5.1 Bloom Filters
	5.1.1 How does Quality change this?
	5.1.2 What are Bloom Maps?
	5.1.3 Using the Spark stats package
	5.1.4 Using the Quality bloom filters
	5.1.5 Expressions which take expression parameters

	5.2 Map Functions
	5.2.1 Building the Lookup Maps
	5.2.2 Expressions which take expression parameters

	5.3 Aggregation Functions
	5.3.1 Aggregation Lambda Functions
	5.3.2 What about my pre 0.7.1 aggExpr functions using ddl type parameters?
	5.3.3 I get a strange error mentioning casts and type incompatiblity - what do?
	5.3.4 Type Lookup and Monoidal Merging
	Type Lookup
	Monoidal Merging

	5.4 User Defined Functions
	5.4.1 What about default parameter or different length parameter length Lambdas?
	5.4.2 Higher Order Functions
	5.4.3 Controlling compilation - Tweaking the Quality Optimisations
	Why do all this?

	5.5 PRNG Functions
	5.5.1 RNG Expressions

	5.6 Row ID Functions
	fieldBasedID with MD5 - Seems far slower than other approaches
	Guaranteed Unique ID - How?

	5.7 QualityRules
	5.7.1 Engine
	Serializing
	Debugging
	flattenRuleResults
	resolveWith
	Why is this needed?
	Any reason why I shouldn't try it?

	forceRunnerEval

	5.7.2 Workflow
	Overview and terms
	Suggested approach to QualityRules management

	5.8 QualityFolder
	5.8.1 Set
	5.8.2 flattenFolderResults
	5.8.3 resolveWith

	5.9 Validation
	5.9.1 What if I want to actually test the ruleSuite runs?
	5.9.2 What I want to change the dataframe before I show it?
	5.9.3 Why do I get a java.lang.AbstractMethodError when validating?

	5.10 Expression Documentation

	6. SQL Functions Documentation
	6.1 _
	6.2 _lambda_
	6.3 agg_Expr
	6.4 as_uuid
	6.5 big_Bloom
	6.6 callFun
	6.7 coalesce_If_Attributes_Missing
	6.8 coalesce_If_Attributes_Missing_Disable
	6.9 comparable_Maps
	6.10 digest_To_Longs
	6.11 digest_To_Longs_Struct
	6.12 disabled_Rule
	6.13 failed
	6.14 field_Based_ID
	6.15 flatten_Results
	6.16 flatten_Rule_Results
	6.17 hash_Field_Based_ID
	6.18 hash_With
	6.19 hash_With_Struct
	6.20 id_base64
	6.21 id_Equal
	6.22 id_from_base64
	6.23 id_raw_type
	6.24 id_size
	6.25 inc
	6.26 long_Pair
	6.27 long_Pair_Equal
	6.28 long_Pair_From_UUID
	6.29 map_Contains
	6.30 map_Lookup
	6.31 meanF
	6.32 murmur3_ID
	6.33 pack_Ints
	6.34 passed
	6.35 prefixed_To_Long_Pair
	6.36 print_Code
	6.37 print_Expr
	6.38 probability
	6.39 probability_In
	6.40 provided_ID
	6.41 results_With
	6.42 return_Sum
	6.43 reverse_Comparable_Maps
	6.44 rng
	6.45 rng_Bytes
	6.46 rng_ID
	6.47 rng_UUID
	6.48 rule_Suite_Result_Details
	6.49 safer_Long_Pair
	6.50 small_Bloom
	6.51 soft_Fail
	6.52 soft_Failed
	6.53 sum_With
	6.54 unique_ID
	6.55 unpack
	6.56 unpack_Id_Triple
	6.57 update_Field
	6.58 za_Field_Based_ID
	6.59 za_Hash_Longs_With
	6.60 za_Hash_Longs_With_Struct
	6.61 za_Hash_With
	6.62 za_Hash_With_Struct
	6.63 za_Longs_Field_Based_ID

